import tensorflow as tf from tensorflow.keras.utils import pad_sequences import pickle import streamlit as st import numpy as np from PIL import Image from tensorflow.keras.applications.xception import preprocess_input import logging tf.get_logger().setLevel(logging.ERROR) model = tf.keras.models.load_model('image_captioning_model.h5') feature_extractor = tf.keras.models.load_model(r"feature_extractor.h5") with open(r'tokenizer_data.pkl', 'rb') as f: pickle_data = pickle.load(f) tokenizer = pickle_data['tokenizer'] idx_to_word = pickle_data['word_mapping'] max_length = 35 def generate_caption(img): in_text = 'startseq' new_img = Image.open(img) image = np.asarray(new_img.resize((299, 299))) image = image.reshape((1, image.shape[0], image.shape[1], image.shape[2])) image = preprocess_input(image) feature = feature_extractor.predict(image, verbose=0) for i in range(max_length): sequence = tokenizer.texts_to_sequences([in_text])[0] sequence = pad_sequences([sequence], max_length) yhat = model.predict([feature, sequence], verbose=0) yhat = np.argmax(yhat) if yhat not in idx_to_word.keys(): break else: word = idx_to_word[yhat] if word == 'endseq': break in_text += " " + word return in_text.replace("startseq", '') st.title("Image Caption Generator") img = st.file_uploader("Upload image", type=["png", "jpg", "jpeg"],) if img is not None: st.image(Image.open(img), width=300) if st.button("Generate Caption"): if img is not None: st.write(generate_caption(img)) else: st.write("Please upload an image") if st.button('Use Example Image'): img=Image.open('example.jpg') #link to the original image: https://www.flickr.com/photos/bambe1964/7837618434/ st.image(img, width=300) st.write(generate_caption('example.jpg')) st.write(f"Link to the source of the example image: https://www.flickr.com/photos/bambe1964/7837618434/")