Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,57 @@
|
|
1 |
-
from fastapi import FastAPI
|
2 |
-
import torch
|
3 |
-
from transformers import CLIPProcessor, CLIPModel
|
4 |
-
from dotenv import load_dotenv
|
5 |
-
import logging
|
6 |
-
import os
|
7 |
-
|
8 |
-
load_dotenv()
|
9 |
-
|
10 |
-
|
11 |
-
logging.basicConfig(level=logging.INFO)
|
12 |
-
logger = logging.getLogger(__name__)
|
13 |
-
|
14 |
-
app = FastAPI(title="Text Embedding API",
|
15 |
-
description="Returns CLIP text embeddings via GET")
|
16 |
-
|
17 |
-
|
18 |
-
HF_TOKEN = os.getenv('hf_token')
|
19 |
-
|
20 |
-
logger.info("Loading CLIP processor and model...")
|
21 |
-
try:
|
22 |
-
processor = CLIPProcessor.from_pretrained(
|
23 |
-
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
|
24 |
-
clip_model = CLIPModel.from_pretrained(
|
25 |
-
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
|
26 |
-
clip_model.eval()
|
27 |
-
logger.info("CLIP model loaded successfully")
|
28 |
-
except Exception as e:
|
29 |
-
logger.error(f"Failed to load CLIP model: {e}")
|
30 |
-
raise
|
31 |
-
|
32 |
-
|
33 |
-
def get_text_embedding(text: str):
|
34 |
-
logger.info(f"Processing text: {text}")
|
35 |
-
try:
|
36 |
-
inputs = processor(text=[text], return_tensors="pt",
|
37 |
-
padding=True, truncation=True)
|
38 |
-
with torch.no_grad():
|
39 |
-
text_embedding = clip_model.get_text_features(**inputs)
|
40 |
-
logger.info("Text embedding generated")
|
41 |
-
return text_embedding.squeeze(0).tolist()
|
42 |
-
except Exception as e:
|
43 |
-
logger.error(f"Error generating embedding: {e}")
|
44 |
-
raise
|
45 |
-
|
46 |
-
|
47 |
-
@app.get("/")
|
48 |
-
async def root():
|
49 |
-
logger.info("Root endpoint accessed")
|
50 |
-
return {"message": "Welcome to the Text Embedding API. Use GET /embedding?text=your_text to get embeddings."}
|
51 |
-
|
52 |
-
|
53 |
-
@app.get("/embedding")
|
54 |
-
async def get_embedding(text: str):
|
55 |
-
logger.info(f"Embedding endpoint called with text")
|
56 |
-
embedding = get_text_embedding(text)
|
57 |
-
return {"embedding": embedding, "dimension": len(embedding)}
|
|
|
1 |
+
from fastapi import FastAPI
|
2 |
+
import torch
|
3 |
+
from transformers import CLIPProcessor, CLIPModel
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
import logging
|
6 |
+
import os
|
7 |
+
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
logging.basicConfig(level=logging.INFO)
|
12 |
+
logger = logging.getLogger(__name__)
|
13 |
+
|
14 |
+
app = FastAPI(title="Text Embedding API",
|
15 |
+
description="Returns CLIP text embeddings via GET")
|
16 |
+
|
17 |
+
|
18 |
+
HF_TOKEN = os.getenv('hf_token')
|
19 |
+
|
20 |
+
logger.info("Loading CLIP processor and model...")
|
21 |
+
try:
|
22 |
+
processor = CLIPProcessor.from_pretrained(
|
23 |
+
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
|
24 |
+
clip_model = CLIPModel.from_pretrained(
|
25 |
+
"openai/clip-vit-large-patch14", use_auth_token=HF_TOKEN)
|
26 |
+
clip_model.eval()
|
27 |
+
logger.info("CLIP model loaded successfully")
|
28 |
+
except Exception as e:
|
29 |
+
logger.error(f"Failed to load CLIP model: {e}")
|
30 |
+
raise
|
31 |
+
|
32 |
+
|
33 |
+
def get_text_embedding(text: str):
|
34 |
+
logger.info(f"Processing text: {text}")
|
35 |
+
try:
|
36 |
+
inputs = processor(text=[text], return_tensors="pt",
|
37 |
+
padding=True, truncation=True)
|
38 |
+
with torch.no_grad():
|
39 |
+
text_embedding = clip_model.get_text_features(**inputs)
|
40 |
+
logger.info("Text embedding generated")
|
41 |
+
return text_embedding.squeeze(0).tolist()
|
42 |
+
except Exception as e:
|
43 |
+
logger.error(f"Error generating embedding: {e}")
|
44 |
+
raise
|
45 |
+
|
46 |
+
|
47 |
+
@app.get("/")
|
48 |
+
async def root():
|
49 |
+
logger.info("Root endpoint accessed")
|
50 |
+
return {"message": "Welcome to the Text Embedding API. Use GET https://ashish-001-text-embedding-api.hf.space/embedding?text=your_text to get embeddings."}
|
51 |
+
|
52 |
+
|
53 |
+
@app.get("/embedding")
|
54 |
+
async def get_embedding(text: str):
|
55 |
+
logger.info(f"Embedding endpoint called with text")
|
56 |
+
embedding = get_text_embedding(text)
|
57 |
+
return {"embedding": embedding, "dimension": len(embedding)}
|