Spaces:
Runtime error
Runtime error
import numpy as np | |
from transformers import AutoTokenizer,AutoModelForSequenceClassification | |
import transformers.convert_graph_to_onnx as onnx_convert | |
from pathlib import Path | |
import transformers | |
from onnxruntime.quantization import quantize_dynamic,QuantType | |
import onnx | |
import torch | |
import onnxruntime as ort | |
import streamlit as st | |
""" | |
type in cmd to create onnx model of hugging face chkpt | |
python3 -m transformers.onnx --model= distilbert-base-uncased-finetuned-sst-2-english sentiment_onnx/ | |
""" | |
model= AutoModelForSequenceClassification.from_pretrained('sentiment_classifier/') | |
tokenizer= AutoTokenizer.from_pretrained('sentiment_classifier/') | |
""" | |
or download the model directly from hub -- | |
chkpt='distilbert-base-uncased-finetuned-sst-2-english' | |
model= AutoModelForSequenceClassification.from_pretrained(chkpt) | |
tokenizer= AutoTokenizer.from_pretrained(chkpt) | |
""" | |
pipeline=transformers.pipeline("text-classification",model=model,tokenizer=tokenizer) | |
""" convert pipeline to onnx object""" | |
onnx_convert.convert_pytorch(pipeline, | |
opset=11, | |
output=Path("sent_clf_onnx/sentiment_classifier_onnx.onnx"), | |
use_external_format=False | |
) | |
""" convert onnx object to another onnx object with int8 quantization """ | |
quantize_dynamic("sent_clf_onnx/sentiment_classifier_onnx.onnx","sent_clf_onnx/sentiment_classifier_onnx_int8.onnx", | |
weight_type=QuantType.QUInt8) | |
print(ort.__version__) | |
print(onnx.__version__) | |