Spaces:
Runtime error
Runtime error
import torch | |
from onnxruntime.quantization import quantize_dynamic,QuantType | |
import os | |
import subprocess | |
import numpy as np | |
import pandas as pd | |
import yaml | |
def read_yaml(file_path): | |
with open(file_path, "r") as f: | |
return yaml.safe_load(f) | |
config = read_yaml('config.yaml') | |
zs_chkpt=config['ZEROSHOT_CLF']['zs_chkpt'] | |
zs_mdl_dir=config['ZEROSHOT_CLF']['zs_mdl_dir'] | |
zs_onnx_mdl_dir=config['ZEROSHOT_CLF']['zs_onnx_mdl_dir'] | |
zs_onnx_mdl_name=config['ZEROSHOT_CLF']['zs_onnx_mdl_name'] | |
zs_onnx_quant_mdl_name=config['ZEROSHOT_CLF']['zs_onnx_quant_mdl_name'] | |
def zero_shot_classification(premise: str, labels: str, model, tokenizer): | |
try: | |
labels=labels.split(',') | |
labels=[l.lower() for l in labels] | |
except: | |
raise Exception("please pass atleast 2 labels to classify") | |
premise=premise.lower() | |
labels_prob=[] | |
for l in labels: | |
hypothesis= f'this is an example of {l}' | |
input = tokenizer.encode(premise,hypothesis, | |
return_tensors='pt', | |
truncation_strategy='only_first') | |
output = model(input) | |
entail_contra_prob = output['logits'][:,[0,2]].softmax(dim=1)[:,1].item() #only normalizing entail & contradict probabilties | |
labels_prob.append(entail_contra_prob) | |
labels_prob_norm=[np.round(100*c/np.sum(labels_prob),1) for c in labels_prob] | |
df=pd.DataFrame({'labels':labels, | |
'Probability':labels_prob_norm}) | |
return df | |
##example | |
# zero_shot_classification(premise='Tiny worms and breath analyzers could screen for \disease while it’s early and treatable', | |
# labels='science, sports, museum') | |
def create_onnx_model_zs(zs_onnx_mdl_dir=zs_onnx_mdl_dir): | |
# create onnx model using | |
if not os.path.exists(zs_onnx_mdl_dir): | |
try: | |
subprocess.run(['python3', '-m', 'transformers.onnx', | |
'--model=valhalla/distilbart-mnli-12-1', | |
'--feature=sequence-classification', | |
zs_onnx_mdl_dir]) | |
except Exception as e: | |
print(e) | |
#create quanitzed model from vanila onnx | |
quantize_dynamic(f"{zs_onnx_mdl_dir}/{zs_onnx_mdl_name}", | |
f"{zs_onnx_mdl_dir}/{zs_onnx_quant_mdl_name}", | |
weight_type=QuantType.QUInt8) | |
else: | |
pass | |
create_onnx_model_zs(zs_onnx_mdl_dir=zs_onnx_mdl_dir) | |
def zero_shot_classification_onnx(premise,labels,_session,_tokenizer): | |
try: | |
labels=labels.split(',') | |
labels=[l.lower() for l in labels] | |
except: | |
raise Exception("please pass atleast 2 labels to classify") | |
premise=premise.lower() | |
labels_prob=[] | |
for l in labels: | |
hypothesis= f'this is an example of {l}' | |
inputs = _tokenizer(premise,hypothesis, | |
return_tensors='pt', | |
truncation_strategy='only_first') | |
input_feed = { | |
"input_ids": np.array(inputs['input_ids']), | |
"attention_mask": np.array((inputs['attention_mask'])) | |
} | |
output = _session.run(output_names=["logits"],input_feed=dict(input_feed))[0] #returns logits as array | |
output=torch.from_numpy(output) | |
entail_contra_prob = output[:,[0,2]].softmax(dim=1)[:,1].item() #only normalizing entail & contradict probabilties | |
labels_prob.append(entail_contra_prob) | |
labels_prob_norm=[np.round(100*c/np.sum(labels_prob),1) for c in labels_prob] | |
df=pd.DataFrame({'labels':labels, | |
'Probability':labels_prob_norm}) | |
return df | |