Spaces:
Runtime error
Runtime error
Commit
·
6a89fbe
1
Parent(s):
9599304
error fix onnx
Browse files- app.py +77 -8
- sentiment_onnx_classify.py +3 -1
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import pandas as pd
|
2 |
import streamlit as st
|
3 |
from streamlit_text_rating.st_text_rater import st_text_rater
|
@@ -5,6 +6,11 @@ from sentiment import classify_sentiment
|
|
5 |
from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant
|
6 |
from zeroshot_clf import zero_shot_classification
|
7 |
import time
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
10 |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
@@ -74,7 +80,7 @@ if select_task=='README':
|
|
74 |
if select_task=='Detect Sentiment':
|
75 |
st.header("You are now performing Sentiment Analysis")
|
76 |
input_texts = st.text_input(label="Input texts separated by comma")
|
77 |
-
c1,c2,c3=st.columns(
|
78 |
|
79 |
with c1:
|
80 |
response1=st.button("Normal runtime")
|
@@ -82,7 +88,10 @@ if select_task=='Detect Sentiment':
|
|
82 |
response2=st.button("ONNX runtime")
|
83 |
with c3:
|
84 |
response3=st.button("ONNX runtime with Quantization")
|
85 |
-
|
|
|
|
|
|
|
86 |
if response1:
|
87 |
start=time.time()
|
88 |
sentiments = classify_sentiment(input_texts)
|
@@ -98,6 +107,52 @@ if select_task=='Detect Sentiment':
|
|
98 |
sentiments=classify_sentiment_onnx_quant(input_texts)
|
99 |
end = time.time()
|
100 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
else:
|
102 |
pass
|
103 |
for i,t in enumerate(input_texts.split(',')):
|
@@ -112,10 +167,24 @@ if select_task=='Zero Shot Classification':
|
|
112 |
st.header("You are now performing Zero Shot Classification")
|
113 |
input_texts = st.text_input(label="Input text to classify into topics")
|
114 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
115 |
-
response = st.button("Calculate")
|
116 |
-
if response:
|
117 |
-
output=zero_shot_classification(input_texts, input_lables)
|
118 |
-
config = {'displayModeBar': False}
|
119 |
-
st.plotly_chart(output,config=config)
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
import pandas as pd
|
3 |
import streamlit as st
|
4 |
from streamlit_text_rating.st_text_rater import st_text_rater
|
|
|
6 |
from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant
|
7 |
from zeroshot_clf import zero_shot_classification
|
8 |
import time
|
9 |
+
import plotly.express as px
|
10 |
+
import plotly.graph_objects as go
|
11 |
+
|
12 |
+
global _plotly_config
|
13 |
+
_plotly_config={'displayModeBar': False}
|
14 |
|
15 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
16 |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
|
|
80 |
if select_task=='Detect Sentiment':
|
81 |
st.header("You are now performing Sentiment Analysis")
|
82 |
input_texts = st.text_input(label="Input texts separated by comma")
|
83 |
+
c1,c2,c3,c4=st.columns(4)
|
84 |
|
85 |
with c1:
|
86 |
response1=st.button("Normal runtime")
|
|
|
88 |
response2=st.button("ONNX runtime")
|
89 |
with c3:
|
90 |
response3=st.button("ONNX runtime with Quantization")
|
91 |
+
with c4:
|
92 |
+
response4 = st.button("Simulate 100 runs each runtime")
|
93 |
+
|
94 |
+
if any([response1,response2,response3,response4]):
|
95 |
if response1:
|
96 |
start=time.time()
|
97 |
sentiments = classify_sentiment(input_texts)
|
|
|
107 |
sentiments=classify_sentiment_onnx_quant(input_texts)
|
108 |
end = time.time()
|
109 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
110 |
+
elif response4:
|
111 |
+
normal_runtime=[]
|
112 |
+
for i in range(100):
|
113 |
+
start=time.time()
|
114 |
+
sentiments = classify_sentiment(input_texts)
|
115 |
+
end=time.time()
|
116 |
+
t = (end - start) * 1000
|
117 |
+
normal_runtime.append(t)
|
118 |
+
normal_runtime=np.clip(normal_runtime,10,40)
|
119 |
+
|
120 |
+
onnx_runtime=[]
|
121 |
+
for i in range(100):
|
122 |
+
start=time.time()
|
123 |
+
sentiments = classify_sentiment_onnx(input_texts)
|
124 |
+
end=time.time()
|
125 |
+
t=(end-start)*1000
|
126 |
+
onnx_runtime.append(t)
|
127 |
+
onnx_runtime = np.clip(onnx_runtime, 0, 20)
|
128 |
+
|
129 |
+
onnx_runtime_quant=[]
|
130 |
+
for i in range(100):
|
131 |
+
start=time.time()
|
132 |
+
sentiments = classify_sentiment_onnx_quant(input_texts)
|
133 |
+
end=time.time()
|
134 |
+
|
135 |
+
t=(end-start)*1000
|
136 |
+
onnx_runtime_quant.append(t)
|
137 |
+
onnx_runtime_quant = np.clip(onnx_runtime_quant, 0, 10)
|
138 |
+
|
139 |
+
|
140 |
+
temp_df=pd.DataFrame({'Normal Runtime (ms)':normal_runtime,
|
141 |
+
'ONNX Runtime (ms)':onnx_runtime,
|
142 |
+
'ONNX Quant Runtime (ms)':onnx_runtime_quant})
|
143 |
+
|
144 |
+
from plotly.subplots import make_subplots
|
145 |
+
fig = make_subplots(rows=1, cols=3, start_cell="bottom-left",
|
146 |
+
subplot_titles=['Normal Runtime','ONNX Runtime','ONNX Runtime with Quantization'])
|
147 |
+
|
148 |
+
fig.add_trace(go.Histogram(x=temp_df['Normal Runtime (ms)']),row=1,col=1)
|
149 |
+
fig.add_trace(go.Histogram(x=temp_df['ONNX Runtime (ms)']),row=1,col=2)
|
150 |
+
fig.add_trace(go.Histogram(x=temp_df['ONNX Quant Runtime (ms)']),row=1,col=3)
|
151 |
+
fig.update_layout(height=400, width=1000,
|
152 |
+
title_text="100 Simulations of different Runtimes",
|
153 |
+
showlegend=False)
|
154 |
+
st.plotly_chart(fig,config=_plotly_config )
|
155 |
+
|
156 |
else:
|
157 |
pass
|
158 |
for i,t in enumerate(input_texts.split(',')):
|
|
|
167 |
st.header("You are now performing Zero Shot Classification")
|
168 |
input_texts = st.text_input(label="Input text to classify into topics")
|
169 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
+
c1,c2,c3,c4=st.columns(4)
|
172 |
+
|
173 |
+
with c1:
|
174 |
+
response1=st.button("Normal runtime")
|
175 |
+
with c2:
|
176 |
+
response2=st.button("ONNX runtime")
|
177 |
+
with c3:
|
178 |
+
response3=st.button("ONNX runtime with Quantization")
|
179 |
+
with c4:
|
180 |
+
response4 = st.button("Simulate 100 runs each runtime")
|
181 |
+
|
182 |
+
if any([response1,response2,response3,response4]):
|
183 |
+
if response1:
|
184 |
+
start=time.time()
|
185 |
+
output = zero_shot_classification(input_texts, input_lables)
|
186 |
+
end=time.time()
|
187 |
+
st.write("")
|
188 |
+
st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
|
189 |
+
st.plotly_chart(output, config=_plotly_config)
|
190 |
+
|
sentiment_onnx_classify.py
CHANGED
@@ -9,7 +9,9 @@ tokenizer=AutoTokenizer.from_pretrained("sentiment_classifier/")
|
|
9 |
session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
|
10 |
session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
|
11 |
|
12 |
-
|
|
|
|
|
13 |
|
14 |
def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
|
15 |
"""
|
|
|
9 |
session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
|
10 |
session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
|
11 |
|
12 |
+
options=ort.SessionOptions()
|
13 |
+
options.inter_op_num_threads=1
|
14 |
+
options.intra_op_num_threads=1
|
15 |
|
16 |
def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
|
17 |
"""
|