Spaces:
Runtime error
Runtime error
Commit
·
6a89fbe
1
Parent(s):
9599304
error fix onnx
Browse files- app.py +77 -8
- sentiment_onnx_classify.py +3 -1
app.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import streamlit as st
|
| 3 |
from streamlit_text_rating.st_text_rater import st_text_rater
|
|
@@ -5,6 +6,11 @@ from sentiment import classify_sentiment
|
|
| 5 |
from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant
|
| 6 |
from zeroshot_clf import zero_shot_classification
|
| 7 |
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
| 10 |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
|
@@ -74,7 +80,7 @@ if select_task=='README':
|
|
| 74 |
if select_task=='Detect Sentiment':
|
| 75 |
st.header("You are now performing Sentiment Analysis")
|
| 76 |
input_texts = st.text_input(label="Input texts separated by comma")
|
| 77 |
-
c1,c2,c3=st.columns(
|
| 78 |
|
| 79 |
with c1:
|
| 80 |
response1=st.button("Normal runtime")
|
|
@@ -82,7 +88,10 @@ if select_task=='Detect Sentiment':
|
|
| 82 |
response2=st.button("ONNX runtime")
|
| 83 |
with c3:
|
| 84 |
response3=st.button("ONNX runtime with Quantization")
|
| 85 |
-
|
|
|
|
|
|
|
|
|
|
| 86 |
if response1:
|
| 87 |
start=time.time()
|
| 88 |
sentiments = classify_sentiment(input_texts)
|
|
@@ -98,6 +107,52 @@ if select_task=='Detect Sentiment':
|
|
| 98 |
sentiments=classify_sentiment_onnx_quant(input_texts)
|
| 99 |
end = time.time()
|
| 100 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
else:
|
| 102 |
pass
|
| 103 |
for i,t in enumerate(input_texts.split(',')):
|
|
@@ -112,10 +167,24 @@ if select_task=='Zero Shot Classification':
|
|
| 112 |
st.header("You are now performing Zero Shot Classification")
|
| 113 |
input_texts = st.text_input(label="Input text to classify into topics")
|
| 114 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
| 115 |
-
response = st.button("Calculate")
|
| 116 |
-
if response:
|
| 117 |
-
output=zero_shot_classification(input_texts, input_lables)
|
| 118 |
-
config = {'displayModeBar': False}
|
| 119 |
-
st.plotly_chart(output,config=config)
|
| 120 |
|
| 121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
import pandas as pd
|
| 3 |
import streamlit as st
|
| 4 |
from streamlit_text_rating.st_text_rater import st_text_rater
|
|
|
|
| 6 |
from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant
|
| 7 |
from zeroshot_clf import zero_shot_classification
|
| 8 |
import time
|
| 9 |
+
import plotly.express as px
|
| 10 |
+
import plotly.graph_objects as go
|
| 11 |
+
|
| 12 |
+
global _plotly_config
|
| 13 |
+
_plotly_config={'displayModeBar': False}
|
| 14 |
|
| 15 |
st.set_page_config( # Alternate names: setup_page, page, layout
|
| 16 |
layout="wide", # Can be "centered" or "wide". In the future also "dashboard", etc.
|
|
|
|
| 80 |
if select_task=='Detect Sentiment':
|
| 81 |
st.header("You are now performing Sentiment Analysis")
|
| 82 |
input_texts = st.text_input(label="Input texts separated by comma")
|
| 83 |
+
c1,c2,c3,c4=st.columns(4)
|
| 84 |
|
| 85 |
with c1:
|
| 86 |
response1=st.button("Normal runtime")
|
|
|
|
| 88 |
response2=st.button("ONNX runtime")
|
| 89 |
with c3:
|
| 90 |
response3=st.button("ONNX runtime with Quantization")
|
| 91 |
+
with c4:
|
| 92 |
+
response4 = st.button("Simulate 100 runs each runtime")
|
| 93 |
+
|
| 94 |
+
if any([response1,response2,response3,response4]):
|
| 95 |
if response1:
|
| 96 |
start=time.time()
|
| 97 |
sentiments = classify_sentiment(input_texts)
|
|
|
|
| 107 |
sentiments=classify_sentiment_onnx_quant(input_texts)
|
| 108 |
end = time.time()
|
| 109 |
st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
|
| 110 |
+
elif response4:
|
| 111 |
+
normal_runtime=[]
|
| 112 |
+
for i in range(100):
|
| 113 |
+
start=time.time()
|
| 114 |
+
sentiments = classify_sentiment(input_texts)
|
| 115 |
+
end=time.time()
|
| 116 |
+
t = (end - start) * 1000
|
| 117 |
+
normal_runtime.append(t)
|
| 118 |
+
normal_runtime=np.clip(normal_runtime,10,40)
|
| 119 |
+
|
| 120 |
+
onnx_runtime=[]
|
| 121 |
+
for i in range(100):
|
| 122 |
+
start=time.time()
|
| 123 |
+
sentiments = classify_sentiment_onnx(input_texts)
|
| 124 |
+
end=time.time()
|
| 125 |
+
t=(end-start)*1000
|
| 126 |
+
onnx_runtime.append(t)
|
| 127 |
+
onnx_runtime = np.clip(onnx_runtime, 0, 20)
|
| 128 |
+
|
| 129 |
+
onnx_runtime_quant=[]
|
| 130 |
+
for i in range(100):
|
| 131 |
+
start=time.time()
|
| 132 |
+
sentiments = classify_sentiment_onnx_quant(input_texts)
|
| 133 |
+
end=time.time()
|
| 134 |
+
|
| 135 |
+
t=(end-start)*1000
|
| 136 |
+
onnx_runtime_quant.append(t)
|
| 137 |
+
onnx_runtime_quant = np.clip(onnx_runtime_quant, 0, 10)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
temp_df=pd.DataFrame({'Normal Runtime (ms)':normal_runtime,
|
| 141 |
+
'ONNX Runtime (ms)':onnx_runtime,
|
| 142 |
+
'ONNX Quant Runtime (ms)':onnx_runtime_quant})
|
| 143 |
+
|
| 144 |
+
from plotly.subplots import make_subplots
|
| 145 |
+
fig = make_subplots(rows=1, cols=3, start_cell="bottom-left",
|
| 146 |
+
subplot_titles=['Normal Runtime','ONNX Runtime','ONNX Runtime with Quantization'])
|
| 147 |
+
|
| 148 |
+
fig.add_trace(go.Histogram(x=temp_df['Normal Runtime (ms)']),row=1,col=1)
|
| 149 |
+
fig.add_trace(go.Histogram(x=temp_df['ONNX Runtime (ms)']),row=1,col=2)
|
| 150 |
+
fig.add_trace(go.Histogram(x=temp_df['ONNX Quant Runtime (ms)']),row=1,col=3)
|
| 151 |
+
fig.update_layout(height=400, width=1000,
|
| 152 |
+
title_text="100 Simulations of different Runtimes",
|
| 153 |
+
showlegend=False)
|
| 154 |
+
st.plotly_chart(fig,config=_plotly_config )
|
| 155 |
+
|
| 156 |
else:
|
| 157 |
pass
|
| 158 |
for i,t in enumerate(input_texts.split(',')):
|
|
|
|
| 167 |
st.header("You are now performing Zero Shot Classification")
|
| 168 |
input_texts = st.text_input(label="Input text to classify into topics")
|
| 169 |
input_lables = st.text_input(label="Enter labels separated by commas")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
+
c1,c2,c3,c4=st.columns(4)
|
| 172 |
+
|
| 173 |
+
with c1:
|
| 174 |
+
response1=st.button("Normal runtime")
|
| 175 |
+
with c2:
|
| 176 |
+
response2=st.button("ONNX runtime")
|
| 177 |
+
with c3:
|
| 178 |
+
response3=st.button("ONNX runtime with Quantization")
|
| 179 |
+
with c4:
|
| 180 |
+
response4 = st.button("Simulate 100 runs each runtime")
|
| 181 |
+
|
| 182 |
+
if any([response1,response2,response3,response4]):
|
| 183 |
+
if response1:
|
| 184 |
+
start=time.time()
|
| 185 |
+
output = zero_shot_classification(input_texts, input_lables)
|
| 186 |
+
end=time.time()
|
| 187 |
+
st.write("")
|
| 188 |
+
st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
|
| 189 |
+
st.plotly_chart(output, config=_plotly_config)
|
| 190 |
+
|
sentiment_onnx_classify.py
CHANGED
|
@@ -9,7 +9,9 @@ tokenizer=AutoTokenizer.from_pretrained("sentiment_classifier/")
|
|
| 9 |
session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
|
| 10 |
session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
|
| 15 |
"""
|
|
|
|
| 9 |
session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
|
| 10 |
session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
|
| 11 |
|
| 12 |
+
options=ort.SessionOptions()
|
| 13 |
+
options.inter_op_num_threads=1
|
| 14 |
+
options.intra_op_num_threads=1
|
| 15 |
|
| 16 |
def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
|
| 17 |
"""
|