ashishraics commited on
Commit
7fe0ea6
·
1 Parent(s): b8a980e

optimized the app

Browse files
.gitignore CHANGED
@@ -1 +1,3 @@
1
- venv
 
 
 
1
+ venv
2
+ sent_clf_onnx
3
+ sentiment_model_dir
app.py CHANGED
@@ -3,12 +3,17 @@ import pandas as pd
3
  import streamlit as st
4
  from streamlit_text_rating.st_text_rater import st_text_rater
5
  from sentiment import classify_sentiment
6
- from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant
7
  from zeroshot_clf import zero_shot_classification
 
 
 
 
 
8
  import time
9
  import plotly.express as px
10
  import plotly.graph_objects as go
11
-
12
  global _plotly_config
13
  _plotly_config={'displayModeBar': False}
14
 
@@ -66,6 +71,18 @@ hide_streamlit_style = """
66
  st.markdown(hide_streamlit_style, unsafe_allow_html=True)
67
 
68
 
 
 
 
 
 
 
 
 
 
 
 
 
69
  st.title("NLP use cases")
70
 
71
  with st.sidebar:
@@ -77,7 +94,36 @@ with st.sidebar:
77
  if select_task=='README':
78
  st.header("NLP Summary")
79
 
80
- if select_task=='Detect Sentiment':
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81
  st.header("You are now performing Sentiment Analysis")
82
  input_texts = st.text_input(label="Input texts separated by comma")
83
  c1,c2,c3,c4=st.columns(4)
@@ -94,33 +140,44 @@ if select_task=='Detect Sentiment':
94
  if any([response1,response2,response3,response4]):
95
  if response1:
96
  start=time.time()
97
- sentiments = classify_sentiment(input_texts)
 
 
 
98
  end=time.time()
99
  st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
100
  elif response2:
101
  start = time.time()
102
- sentiments=classify_sentiment_onnx(input_texts)
 
 
103
  end = time.time()
104
  st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
105
  elif response3:
106
  start = time.time()
107
- sentiments=classify_sentiment_onnx_quant(input_texts)
 
 
108
  end = time.time()
109
  st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
110
  elif response4:
111
  normal_runtime=[]
112
  for i in range(100):
113
  start=time.time()
114
- sentiments = classify_sentiment(input_texts)
 
 
115
  end=time.time()
116
  t = (end - start) * 1000
117
  normal_runtime.append(t)
118
- normal_runtime=np.clip(normal_runtime,10,40)
119
 
120
  onnx_runtime=[]
121
  for i in range(100):
122
  start=time.time()
123
- sentiments = classify_sentiment_onnx(input_texts)
 
 
124
  end=time.time()
125
  t=(end-start)*1000
126
  onnx_runtime.append(t)
@@ -129,12 +186,14 @@ if select_task=='Detect Sentiment':
129
  onnx_runtime_quant=[]
130
  for i in range(100):
131
  start=time.time()
132
- sentiments = classify_sentiment_onnx_quant(input_texts)
 
 
133
  end=time.time()
134
 
135
  t=(end-start)*1000
136
  onnx_runtime_quant.append(t)
137
- onnx_runtime_quant = np.clip(onnx_runtime_quant, 0, 10)
138
 
139
 
140
  temp_df=pd.DataFrame({'Normal Runtime (ms)':normal_runtime,
@@ -188,5 +247,3 @@ if select_task=='Zero Shot Classification':
188
  st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
189
  st.plotly_chart(output, config=_plotly_config)
190
 
191
-
192
- #awesome
 
3
  import streamlit as st
4
  from streamlit_text_rating.st_text_rater import st_text_rater
5
  from sentiment import classify_sentiment
6
+ from sentiment_onnx_classify import classify_sentiment_onnx, classify_sentiment_onnx_quant,create_onnx_model
7
  from zeroshot_clf import zero_shot_classification
8
+ from transformers import AutoTokenizer,AutoModelForSequenceClassification
9
+ from onnxruntime.quantization import quantize_dynamic,QuantType
10
+ import transformers.convert_graph_to_onnx as onnx_convert
11
+ from pathlib import Path
12
+ import os
13
  import time
14
  import plotly.express as px
15
  import plotly.graph_objects as go
16
+ import onnxruntime as ort
17
  global _plotly_config
18
  _plotly_config={'displayModeBar': False}
19
 
 
71
  st.markdown(hide_streamlit_style, unsafe_allow_html=True)
72
 
73
 
74
+ @st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
75
+ def create_model_dir(chkpt, model_dir):
76
+ if not os.path.exists(chkpt):
77
+ os.mkdir(model_dir)
78
+ _model = AutoModelForSequenceClassification.from_pretrained(chkpt)
79
+ _tokenizer = AutoTokenizer.from_pretrained(chkpt)
80
+ _model.save_pretrained(model_dir)
81
+ _tokenizer.save_pretrained(model_dir)
82
+ else:
83
+ pass
84
+
85
+
86
  st.title("NLP use cases")
87
 
88
  with st.sidebar:
 
94
  if select_task=='README':
95
  st.header("NLP Summary")
96
 
97
+ ############### Pre-Download & instantiate objects for sentiment analysis *********************** START **********************
98
+ sent_chkpt = 'distilbert-base-uncased-finetuned-sst-2-english'
99
+ sent_model_dir='sentiment_model_dir'
100
+ #create model/token dir
101
+ create_model_dir(chkpt=sent_chkpt, model_dir=sent_model_dir)
102
+
103
+ @st.cache(allow_output_mutation=True, suppress_st_warning=True, max_entries=None, ttl=None)
104
+ def task_selected(task,sent_model_dir=sent_model_dir):
105
+ model_sentiment=AutoModelForSequenceClassification.from_pretrained(sent_model_dir)
106
+ tokenizer_sentiment=AutoTokenizer.from_pretrained(sent_model_dir)
107
+
108
+ create_onnx_model(_model=model_sentiment, _tokenizer=tokenizer_sentiment)
109
+
110
+ #create inference session
111
+ sentiment_session = ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
112
+ sentiment_session_int8 = ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
113
+
114
+ return model_sentiment,tokenizer_sentiment,sentiment_session,sentiment_session_int8
115
+
116
+
117
+ ############## Pre-Download & instantiate objects for sentiment analysis ********************* END **********************************
118
+
119
+ if select_task == 'Detect Sentiment':
120
+
121
+ t1=time.time()
122
+ model_sentiment,tokenizer_sentiment,\
123
+ sentiment_session,sentiment_session_int8 = task_selected(task=select_task)
124
+ t2 = time.time()
125
+ st.write(f"Total time to load Model is {(t2-t1)*1000:.1f} ms")
126
+
127
  st.header("You are now performing Sentiment Analysis")
128
  input_texts = st.text_input(label="Input texts separated by comma")
129
  c1,c2,c3,c4=st.columns(4)
 
140
  if any([response1,response2,response3,response4]):
141
  if response1:
142
  start=time.time()
143
+ sentiments = classify_sentiment(input_texts,
144
+ model=model_sentiment,
145
+ tokenizer=tokenizer_sentiment
146
+ )
147
  end=time.time()
148
  st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
149
  elif response2:
150
  start = time.time()
151
+ sentiments=classify_sentiment_onnx(input_texts,
152
+ _session=sentiment_session,
153
+ _tokenizer=tokenizer_sentiment)
154
  end = time.time()
155
  st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
156
  elif response3:
157
  start = time.time()
158
+ sentiments=classify_sentiment_onnx_quant(input_texts,
159
+ _session=sentiment_session_int8,
160
+ _tokenizer=tokenizer_sentiment)
161
  end = time.time()
162
  st.write(f"Time taken for computation {(end - start) * 1000:.1f} ms")
163
  elif response4:
164
  normal_runtime=[]
165
  for i in range(100):
166
  start=time.time()
167
+ sentiments = classify_sentiment(input_texts,
168
+ model=model_sentiment,
169
+ tokenizer=tokenizer_sentiment)
170
  end=time.time()
171
  t = (end - start) * 1000
172
  normal_runtime.append(t)
173
+ normal_runtime=np.clip(normal_runtime,10,60)
174
 
175
  onnx_runtime=[]
176
  for i in range(100):
177
  start=time.time()
178
+ sentiments = classify_sentiment_onnx(input_texts,
179
+ _session=sentiment_session,
180
+ _tokenizer=tokenizer_sentiment)
181
  end=time.time()
182
  t=(end-start)*1000
183
  onnx_runtime.append(t)
 
186
  onnx_runtime_quant=[]
187
  for i in range(100):
188
  start=time.time()
189
+ sentiments = classify_sentiment_onnx_quant(input_texts,
190
+ _session=sentiment_session,
191
+ _tokenizer=tokenizer_sentiment)
192
  end=time.time()
193
 
194
  t=(end-start)*1000
195
  onnx_runtime_quant.append(t)
196
+ onnx_runtime_quant = np.clip(onnx_runtime_quant, 0, 20)
197
 
198
 
199
  temp_df=pd.DataFrame({'Normal Runtime (ms)':normal_runtime,
 
247
  st.write(f"Time taken for computation {(end-start)*1000:.1f} ms")
248
  st.plotly_chart(output, config=_plotly_config)
249
 
 
 
sentiment.py CHANGED
@@ -6,7 +6,7 @@ model=AutoModelForSequenceClassification.from_pretrained(chkpt)
6
  tokenizer=AutoTokenizer.from_pretrained(chkpt)
7
  # tokenizer=AutoTokenizer.from_pretrained('sentiment_classifier/')
8
 
9
- def classify_sentiment(texts,model=model,tokenizer=tokenizer):
10
  """
11
  user will pass texts separated by comma
12
  """
 
6
  tokenizer=AutoTokenizer.from_pretrained(chkpt)
7
  # tokenizer=AutoTokenizer.from_pretrained('sentiment_classifier/')
8
 
9
+ def classify_sentiment(texts,model,tokenizer):
10
  """
11
  user will pass texts separated by comma
12
  """
sentiment_classifier/config.json DELETED
@@ -1,34 +0,0 @@
1
- {
2
- "_name_or_path": "distilbert-base-uncased-finetuned-sst-2-english",
3
- "activation": "gelu",
4
- "architectures": [
5
- "DistilBertForSequenceClassification"
6
- ],
7
- "attention_dropout": 0.1,
8
- "dim": 768,
9
- "dropout": 0.1,
10
- "finetuning_task": "sst-2",
11
- "hidden_dim": 3072,
12
- "id2label": {
13
- "0": "NEGATIVE",
14
- "1": "POSITIVE"
15
- },
16
- "initializer_range": 0.02,
17
- "label2id": {
18
- "NEGATIVE": 0,
19
- "POSITIVE": 1
20
- },
21
- "max_position_embeddings": 512,
22
- "model_type": "distilbert",
23
- "n_heads": 12,
24
- "n_layers": 6,
25
- "output_past": true,
26
- "pad_token_id": 0,
27
- "qa_dropout": 0.1,
28
- "seq_classif_dropout": 0.2,
29
- "sinusoidal_pos_embds": false,
30
- "tie_weights_": true,
31
- "torch_dtype": "float32",
32
- "transformers_version": "4.18.0",
33
- "vocab_size": 30522
34
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sentiment_classifier/special_tokens_map.json DELETED
@@ -1 +0,0 @@
1
- {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
 
 
sentiment_classifier/tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
sentiment_classifier/tokenizer_config.json DELETED
@@ -1 +0,0 @@
1
- {"do_lower_case": true, "unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]", "tokenize_chinese_chars": true, "strip_accents": null, "model_max_length": 512, "special_tokens_map_file": null, "name_or_path": "distilbert-base-uncased-finetuned-sst-2-english", "do_basic_tokenize": true, "never_split": null, "tokenizer_class": "DistilBertTokenizer"}
 
 
sentiment_classifier/vocab.txt DELETED
The diff for this file is too large to render. See raw diff
 
sentiment_onnx.py CHANGED
@@ -12,8 +12,7 @@ python3 -m transformers.onnx --model= distilbert-base-uncased-finetuned-sst-2-en
12
  """
13
  chkpt='distilbert-base-uncased-finetuned-sst-2-english'
14
  model= AutoModelForSequenceClassification.from_pretrained(chkpt)
15
- tokenizer= AutoTokenizer.from_pretrained('chkpt')
16
- # tokenizer= AutoTokenizer.from_pretrained('sentiment_classifier/')
17
 
18
  """
19
  or download the model directly from hub --
 
12
  """
13
  chkpt='distilbert-base-uncased-finetuned-sst-2-english'
14
  model= AutoModelForSequenceClassification.from_pretrained(chkpt)
15
+ tokenizer= AutoTokenizer.from_pretrained(chkpt)
 
16
 
17
  """
18
  or download the model directly from hub --
sentiment_onnx_classify.py CHANGED
@@ -1,23 +1,74 @@
1
  import onnxruntime as ort
2
  import torch
3
- from transformers import AutoTokenizer
4
  import numpy as np
 
 
 
 
 
5
 
6
  chkpt='distilbert-base-uncased-finetuned-sst-2-english'
7
- tokenizer=AutoTokenizer.from_pretrained(chkpt)
8
- # tokenizer=AutoTokenizer.from_pretrained("sentiment_classifier/")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
  #create onnx & onnx_int_8 sessions
11
- session=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
12
- session_int8=ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
13
 
14
  # options=ort.SessionOptions()
15
  # options.inter_op_num_threads=1
16
  # options.intra_op_num_threads=1
17
 
18
- def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
19
  """
20
- user will pass texts separated by comma
 
 
 
 
 
 
 
 
21
  """
22
  try:
23
  texts=texts.split(',')
@@ -32,15 +83,22 @@ def classify_sentiment_onnx(texts,_model=session,_tokenizer=tokenizer):
32
  "attention_mask":np.array((_inputs['attention_mask']))
33
  }
34
 
35
- output = _model.run(input_feed=input_feed, output_names=['output_0'])[0]
36
 
37
  output=np.argmax(output,axis=1)
38
  output = ['Positive' if i == 1 else 'Negative' for i in output]
39
  return output
40
 
41
- def classify_sentiment_onnx_quant(texts, _model=session_int8, _tokenizer=tokenizer):
42
  """
43
- user will pass texts separated by comma
 
 
 
 
 
 
 
44
  """
45
  try:
46
  texts=texts.split(',')
@@ -56,7 +114,7 @@ def classify_sentiment_onnx_quant(texts, _model=session_int8, _tokenizer=tokeniz
56
  "attention_mask":np.array((_inputs['attention_mask']))
57
  }
58
 
59
- output = _model.run(input_feed=input_feed, output_names=['output_0'])[0]
60
 
61
  output=np.argmax(output,axis=1)
62
  output = ['Positive' if i == 1 else 'Negative' for i in output]
 
1
  import onnxruntime as ort
2
  import torch
3
+ from transformers import AutoTokenizer,AutoModelForSequenceClassification
4
  import numpy as np
5
+ import transformers
6
+ from onnxruntime.quantization import quantize_dynamic,QuantType
7
+ import transformers.convert_graph_to_onnx as onnx_convert
8
+ from pathlib import Path
9
+ import os
10
 
11
  chkpt='distilbert-base-uncased-finetuned-sst-2-english'
12
+ model= AutoModelForSequenceClassification.from_pretrained(chkpt)
13
+ tokenizer= AutoTokenizer.from_pretrained(chkpt)
14
+
15
+ def create_onnx_model(_model, _tokenizer):
16
+ """
17
+
18
+ Args:
19
+ _model: model checkpoint with AutoModelForSequenceClassification
20
+ _tokenizer: model checkpoint with AutoTokenizer
21
+
22
+ Returns:
23
+ Creates a simple ONNX model & int8 Quantized Model in the directory "sent_clf_onnx/" if directory not present
24
+
25
+ """
26
+ if not os.path.exists('sent_clf_onnx'):
27
+ os.mkdir('sent_clf_onnx')
28
+ """
29
+ Making ONNX model object
30
+ """
31
+ pipeline=transformers.pipeline("text-classification", model=_model, tokenizer=_tokenizer)
32
+
33
+ """
34
+ convert pipeline to onnx object
35
+ """
36
+ onnx_convert.convert_pytorch(pipeline,
37
+ opset=11,
38
+ output=Path("sent_clf_onnx/sentiment_classifier_onnx.onnx"),
39
+ use_external_format=False
40
+ )
41
+
42
+ """
43
+ convert onnx object to another onnx object with int8 quantization
44
+ """
45
+ quantize_dynamic("sent_clf_onnx/sentiment_classifier_onnx.onnx","sent_clf_onnx/sentiment_classifier_onnx_int8.onnx",
46
+ weight_type=QuantType.QUInt8)
47
+ else:
48
+ pass
49
+
50
+
51
+
52
 
53
  #create onnx & onnx_int_8 sessions
54
+ session = ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx.onnx")
55
+ session_int8 = ort.InferenceSession("sent_clf_onnx/sentiment_classifier_onnx_int8.onnx")
56
 
57
  # options=ort.SessionOptions()
58
  # options.inter_op_num_threads=1
59
  # options.intra_op_num_threads=1
60
 
61
+ def classify_sentiment_onnx(texts, _session, _tokenizer):
62
  """
63
+
64
+ Args:
65
+ texts: input texts from user
66
+ _session: pass ONNX runtime session
67
+ _tokenizer: Relevant Tokenizer e.g. AutoTokenizer.from_pretrained("same checkpoint as the model")
68
+
69
+ Returns:
70
+ list of Positve and Negative texts
71
+
72
  """
73
  try:
74
  texts=texts.split(',')
 
83
  "attention_mask":np.array((_inputs['attention_mask']))
84
  }
85
 
86
+ output = _session.run(input_feed=input_feed, output_names=['output_0'])[0]
87
 
88
  output=np.argmax(output,axis=1)
89
  output = ['Positive' if i == 1 else 'Negative' for i in output]
90
  return output
91
 
92
+ def classify_sentiment_onnx_quant(texts, _session, _tokenizer):
93
  """
94
+ Args:
95
+ texts: input texts from user
96
+ _session: pass ONNX runtime session
97
+ _tokenizer: Relevant Tokenizer e.g. AutoTokenizer.from_pretrained("same checkpoint as the model")
98
+
99
+ Returns:
100
+ list of Positve and Negative texts
101
+
102
  """
103
  try:
104
  texts=texts.split(',')
 
114
  "attention_mask":np.array((_inputs['attention_mask']))
115
  }
116
 
117
+ output = _session.run(input_feed=input_feed, output_names=['output_0'])[0]
118
 
119
  output=np.argmax(output,axis=1)
120
  output = ['Positive' if i == 1 else 'Negative' for i in output]