import torch from transformers import AutoModelForSequenceClassification,AutoTokenizer chkpt='distilbert-base-uncased-finetuned-sst-2-english' model=AutoModelForSequenceClassification.from_pretrained(chkpt) tokenizer=AutoTokenizer.from_pretrained(chkpt) # tokenizer=AutoTokenizer.from_pretrained('sentiment_classifier/') def classify_sentiment(texts,model=model,tokenizer=tokenizer): """ user will pass texts separated by comma """ try: texts=texts.split(',') except: pass input = tokenizer(texts, padding=True, truncation=True, return_tensors="pt") logits = model(**input)['logits'].softmax(dim=1) logits = torch.argmax(logits, dim=1) output = ['Positive' if i == 1 else 'Negative' for i in logits] return output