Spaces:
Runtime error
Runtime error
File size: 7,309 Bytes
d4ea1a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
import openai
import json
import ast
import os
import chainlit as cl
from functions.FunctionManager import FunctionManager
import inspect
import os
import tiktoken
import importlib
import json
from chainlit import user_session
# Get all subdirectories under the 'plugins' directory, ignoring directories named '__pycache__'
plugin_dirs = [d for d in os.listdir('plugins')
if os.path.isdir(os.path.join('plugins', d)) and d != '__pycache__']
functions = []
# Iterate through each subdirectory (i.e., each plugin)
for dir in plugin_dirs:
# Try to read the plugin's configuration file
try:
with open(f'plugins/{dir}/config.json', 'r') as f:
config = json.load(f)
enabled = config.get('enabled', True)
except FileNotFoundError:
# If the configuration file does not exist, we assume this plugin should be imported
enabled = True
# Check if this plugin should be imported
if not enabled:
continue
# Dynamically import each plugin's functions module
module = importlib.import_module(f'plugins.{dir}.functions')
# Get all functions in the module and add them to the functions list
functions.extend([
obj for name, obj in inspect.getmembers(module)
if inspect.isfunction(obj)
])
function_manager = FunctionManager(functions=functions)
print("functions:", function_manager.generate_functions_array())
max_tokens = 5000
def __truncate_conversation(conversation) -> None:
"""
Truncate the conversation
"""
# Take the first one out
system_con = conversation[0]
# Remove the first one
conversation = conversation[1:]
while True:
if (get_token_count(conversation) > max_tokens
and len(conversation) > 1):
# Don't remove the first message
conversation.pop(1)
else:
break
# Add the first one back
conversation.insert(0, system_con)
return conversation
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def get_token_count(conversation) -> int:
"""
Get token count
"""
encoding = tiktoken.encoding_for_model('gpt-3.5-turbo')
num_tokens = 0
for message in conversation:
# every message follows <im_start>{role/name}\n{content}<im_end>\n
num_tokens += 4
for key, value in message.items():
num_tokens += len(encoding.encode(str(value)))
if key == "name": # if there's a name, the role is omitted
num_tokens += -1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
MAX_ITER = 5
async def on_message(user_message: object):
print("==================================")
print(user_message)
print("==================================")
user_message = str(user_message)
message_history = cl.user_session.get("message_history")
message_history.append({"role": "user", "content": user_message})
cur_iter = 0
while cur_iter < MAX_ITER:
# OpenAI call
openai_message = {"role": "", "content": ""}
function_ui_message = None
content_ui_message = cl.Message(content="")
stream_resp = None
send_message = __truncate_conversation(message_history)
try:
async for stream_resp in await openai.ChatCompletion.acreate(
model="gpt-3.5-turbo",
messages=send_message,
stream=True,
function_call="auto",
functions=function_manager.generate_functions_array(),
temperature=0.3
): # type: ignore
new_delta = stream_resp.choices[0]["delta"]
openai_message, content_ui_message, function_ui_message = await process_new_delta(
new_delta, openai_message, content_ui_message,
function_ui_message)
except Exception as e:
print(e)
cur_iter += 1
continue
if stream_resp is None:
break
message_history.append(openai_message)
if function_ui_message is not None:
await function_ui_message.send()
if stream_resp.choices[0]["finish_reason"] == "stop":
break
elif stream_resp.choices[0]["finish_reason"] != "function_call":
raise ValueError(stream_resp.choices[0]["finish_reason"])
# if code arrives here, it means there is a function call
function_name = openai_message.get("function_call").get("name")
print(openai_message.get("function_call"))
try:
arguments = json.loads(
openai_message.get("function_call").get("arguments"))
except:
arguments = ast.literal_eval(
openai_message.get("function_call").get("arguments"))
function_response = await function_manager.call_function(
function_name, arguments)
# print(function_response)
message_history.append({
"role": "function",
"name": function_name,
"content": function_response,
})
await cl.Message(
author=function_name,
content=str(function_response),
language="json",
indent=1,
).send()
cur_iter += 1
async def process_new_delta(new_delta, openai_message, content_ui_message,
function_ui_message):
if "role" in new_delta:
openai_message["role"] = new_delta["role"]
if "content" in new_delta:
new_content = new_delta.get("content") or ""
openai_message["content"] += new_content
await content_ui_message.stream_token(new_content)
if "function_call" in new_delta:
if "name" in new_delta["function_call"]:
openai_message["function_call"] = {
"name": new_delta["function_call"]["name"]
}
await content_ui_message.send()
function_ui_message = cl.Message(
author=new_delta["function_call"]["name"],
content="",
indent=1,
language="json")
await function_ui_message.stream_token(
new_delta["function_call"]["name"])
if "arguments" in new_delta["function_call"]:
if "arguments" not in openai_message["function_call"]:
openai_message["function_call"]["arguments"] = ""
openai_message["function_call"]["arguments"] += new_delta[
"function_call"]["arguments"]
await function_ui_message.stream_token(
new_delta["function_call"]["arguments"])
return openai_message, content_ui_message, function_ui_message
@cl.on_chat_start
def start_chat():
cl.user_session.set(
"message_history",
[{
"role": "system",
"content": """
you are now chatting with an AI assistant. The assistant is helpful, creative, clever, and very friendly.
"""
}],
)
@cl.on_message
async def run_conversation(user_message: object):
await on_message(user_message)
|