File size: 9,053 Bytes
4b722ec
 
 
 
89cd5d5
 
 
4b722ec
89cd5d5
4b722ec
 
 
 
 
 
ac20456
4b722ec
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac20456
 
 
 
 
4b722ec
 
 
 
 
ac20456
4b722ec
 
ac20456
4b722ec
 
 
 
 
 
 
 
 
 
 
 
ac20456
 
4b722ec
 
 
 
 
 
 
 
ac20456
 
4b722ec
 
 
 
 
 
ac20456
4b722ec
 
 
 
 
 
 
 
 
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac20456
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ac20456
4b722ec
 
 
 
ac20456
 
4b722ec
 
 
 
 
 
 
 
 
ac20456
4b722ec
 
 
ac20456
4b722ec
 
 
 
89cd5d5
 
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import sys
import re
import os
import json

from src.vectordb.ingest import create_wikivoyage_docs_db_and_add_data, create_wikivoyage_listings_db_and_add_data

sys.path.append("../")
from src.vectordb.search import search_wikivoyage_listings, search_wikivoyage_docs
from src.sustainability import s_fairness
import logging

logger = logging.getLogger(__name__)
logging.basicConfig(encoding='utf-8', level=logging.DEBUG)

from src.helpers.data_loaders import load_scores


def get_travel_months(query):
    """

    Function to parse the user's query and search if month of travel has been provided by the user.

    Args:
    - query: str

    """
    months = [
        "January", "February", "March", "April", "May", "June",
        "July", "August", "September", "October", "November", "December"
    ]

    seasons = {
        "spring": ["March", "April", "May"],
        "summer": ["June", "July", "August"],
        "fall": ["September", "October", "November"],
        "autumn": ["September", "October", "November"],
        "winter": ["December", "January", "February"]
    }

    months_in_query = []

    for month in months:
        if re.search(r'\b' + month + r'\b', query, re.IGNORECASE):
            months_in_query.append(month)

    # Check for seasons in the query
    for season, season_months in seasons.items():
        if re.search(r'\b' + season + r'\b', query, re.IGNORECASE):
            months_in_query += season_months

    # Return None if neither months nor seasons are found
    return months_in_query


def get_wikivoyage_context(query, limit=10, reranking=0):
    """

    Function to retrieve the relevant documents and listings from the wikivoyage database. Works in two steps:
    (i) the relevant cities are returned by the wikivoyage_docs table and (ii) then passed on to the wikivoyage listings database to retrieve further information.
    The user can pass a limit of how many results the search should return as well as whether to perform reranking (uses a CrossEncoderReranker)

    Args:
        - query: str
        - limit: int
        - reranking: bool

    """

    # limit = params['limit']
    # reranking = params['reranking']

    docs = search_wikivoyage_docs(query, limit, reranking)
    logger.info("Finished getting chunked wikivoyage docs.")

    results = {}
    for doc in docs:
        results[doc['city']] = {key: value for key, value in doc.items() if key != 'city'}
        results[doc['city']]['listings'] = []

    cities = [result['city'] for result in docs]

    listings = search_wikivoyage_listings(query, cities, limit, reranking)
    logger.info("Finished getting wikivoyage listings.")
    # logger.info(type(docs), type(listings))

    for listing in listings:
        # logger.info(listing['city'])
        results[listing['city']]['listings'].append({
            'type': listing['type'],
            'name': listing['title'],
            'description': listing['description']
        })

    logger.info("Returning retrieval results.")
    return results


def get_sustainability_scores(starting_point: str, query: str, destinations: list):
    """

    Function to get the s-fairness scores for each destination for the given month (or the ideal month of travel if the user hasn't provided a month).
    If multiple months are provided (or season), then the month with the minimum s-fairness score is chosen for the city.

    Args:
        - query: str
        - destinations: list

    """

    result = []  # list of dicts of the format {city: <city>, month: <month>, }
    city_scores = {}

    months = get_travel_months(query)
    logger.info("Finished parsing query for months.")

    popularity_data = load_scores("popularity")
    seasonality_data = load_scores("seasonality")
    emissions_data = load_scores("emissions")
    data = [popularity_data, seasonality_data, emissions_data]

    for city in destinations:
        if city not in city_scores:
            city_scores[city] = []

        if not months:  # no month(s) or seasons provided by the user
            city_scores[city].append(s_fairness.compute_sfairness_score(data, starting_point, city))
        else:
            for month in months:
                city_scores[city].append(s_fairness.compute_sfairness_score(data, city, month))

    logger.info("Finished getting s-fairness scores.")

    for city, scores in city_scores.items():

        no_result = 0
        for score in scores:
            if not score['month']:
                no_result = 1
                result.append({
                    'city': city,
                    'month': 'No data available',
                    's-fairness': 'No data available',
                    'mode': 'No data available'
                })
                break

        if not no_result:
            min_score = min(scores, key=lambda x: x['s-fairness'])
            result.append({
                'city': city,
                'month': min_score['month'],
                's-fairness': min_score['s-fairness'],
                'mode': min_score['mode'],
            })

    logger.info("Returning s-fairness results.")
    return result


def get_cities(context: dict):
    """
    Only to be used for testing! Function that returns a list of cities with their s-fairness scores, provided the retrieved context

    Args:
        - context: dict

    """

    recommended_cities = []
    info = context[list(context.keys())[0]]
    for city, info in context.items():
        city_info = {
            'city': city,
            'country': info['country']
        }

        if "sustainability" in info:
            city_info['month'] = info['sustainability']['month']
            city_info['s-fairness'] = info['sustainability']['s-fairness']

        recommended_cities.append(city_info)

    if "sustainability" in info:
        def get_s_fairness_value(item):
            s_fairness = item['s-fairness']
            if s_fairness == 'No data available':
                return float('inf')  # Assign a high value for "No data available"
            return s_fairness

        # Sort the list using the custom key
        sorted_cities = sorted(recommended_cities, key=get_s_fairness_value)
        return sorted_cities

    else:
        return recommended_cities


def get_context(starting_point: str, query: str, **params):
    """
    Function that returns all the context: from the database, as well as the respective s-fairness scores for the
    destinations. The default does not consider S-Fairness scores, i.e. to append sustainability scores, a non-zero
    parameter "sustainability" needs to be explicitly passed to params.

    Args:
        - query: str
        - params: dict; contains value of the limit and reranking (and sustainability)

    """

    limit = 3
    reranking = 1

    if 'limit' in params:
        limit = params['limit']

    if 'reranking' in params:
        reranking = params['reranking']

    wikivoyage_context = get_wikivoyage_context(query, limit, reranking)
    recommended_cities = wikivoyage_context.keys()

    if 'sustainability' in params and params['sustainability']:
        s_fairness_scores = get_sustainability_scores(starting_point, query, recommended_cities)

        for score in s_fairness_scores:
            wikivoyage_context[score['city']]['sustainability'] = {
                'month': score['month'],
                's-fairness': score['s-fairness'],
                'transport': score['mode']
            }

    return wikivoyage_context


def test():
    queries = []
    query = "Suggest some places to visit during winter. I like hiking, nature and the mountains and I enjoy skiing " \
            "in winter. "
    starting_point = "Munich"
    context = None

    try:
        context = get_context(starting_point, query, sustainability=1)
        # cities = get_cities(context)
        # print(cities)
    except FileNotFoundError as e:
        try:
            create_wikivoyage_docs_db_and_add_data()
            create_wikivoyage_listings_db_and_add_data()

            try:
                context = get_context(query, sustainability=1)
                # cities = get_cities(context)
                # print(cities)
            except Exception as e:
                exc_type, exc_obj, exc_tb = sys.exc_info()
                fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
                logger.error(f"Error while getting context: {e}, {(exc_type, fname, exc_tb.tb_lineno)}")

        except Exception as e:
            logger.error(f"Error while creating DB: {e}")

    except Exception as e:
        exc_type, exc_obj, exc_tb = sys.exc_info()
        fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
        logger.error(f"Error while getting context: {e}, {(exc_type, fname, exc_tb.tb_lineno)}")

    file_path = os.path.join(os.getcwd(), "test_results", "test_result.json")
    with open(file_path, 'w') as file:
        json.dump(context, file)

    return context


if __name__ == "__main__":
    context = test()

    print(context)