File size: 4,440 Bytes
89cd5d5
 
4b722ec
 
 
 
 
 
 
 
 
89cd5d5
4b722ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cd5d5
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Optional

import pandas as pd
import os
import re
from sentence_transformers import SentenceTransformer
import sys

SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.dirname(SCRIPT_DIR))

from src.data_directories import *


def create_chunks(city, country, text):
    """
    
    Helper function that creates chunks given paragraph(s) of text based on implicit sections in the text. 

    Args: 
        - city: str
        - country: str
        - text: str; document that needs to be chunked

    """

    for i, line in enumerate(text):
        if line[0] == "\n":
            del text[i]

    index = 0
    chunks = []
    pattern = re.compile("==")
    ignore = re.compile("===")
    section = 'Introduction'
    for i, line in enumerate(text):
        if pattern.search(line) and not ignore.search(line):
            chunk = ''.join(text[index:i])
            chunks.append({
                'city': city,
                'country': country,
                'section': section,
                'text': chunk,
                # 'vector': f'city: {city}, country: {country}, section: {section}, text: {chunk}' 
            })
            index = i + 1
            section = re.sub(pattern, '', line).strip()

    df = pd.DataFrame(chunks)
    return df


def read_docs():
    """
    
    Helper function that reads all of the Wikivoyage documents containing information about the city. 

    """

    df = pd.DataFrame()
    cities = pd.read_csv(cities_csv)
    for file_name in os.listdir(wikivoyage_docs_dir + "cleaned/"):
        city = file_name.split(".")[0]
        # print(city)
        country = cities[cities['city'] == city]['country'].item()
        with open(wikivoyage_docs_dir + "cleaned/" + file_name) as file:
            text = file.readlines()
            chunk_df = create_chunks(city, country, text)
            df = pd.concat([df, chunk_df])

    return df


def read_listings():
    """
    
    Helper function that reads the Wikivoyage listings csv containing tabular information about 144 cities. 

    """
    df = pd.read_csv(wikivoyage_listings_dir + "wikivoyage-listings-cleaned.csv")
    cities = pd.read_csv(cities_csv)

    def find_country(city):
        return cities[cities['city'] == city]['country'].values[0]

    df['country'] = df['city'].apply(find_country)

    return df


def preprocess_df(df):
    """
    
    Helper function that preprocesses the dataframe containing chunks of text and removes hyperlinks and strips the \n from the text. 

    Args:
        - df: dataframe

    """
    section_counts = df['section'].value_counts()
    sections_to_keep = section_counts[section_counts > 150].index
    filtered_df = df[df['section'].isin(sections_to_keep)]

    def preprocess_text(s):
        s = re.sub(r'http\S+', '', s)
        s = re.sub(r'=+', '', s)
        s = s.strip()
        return s

    filtered_df['text'] = filtered_df['text'].apply(preprocess_text)

    return filtered_df


def compute_wv_docs_embeddings(df):
    """
    
    Helper function that computes embeddings for the text. The all-MiniLM-L6-v2 embedding model is used.  

    Args:
        - df: dataframe

    """
    model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    vector_dimension = model.get_sentence_embedding_dimension()

    print("Computing embeddings")
    embeddings = []
    for i, row in df.iterrows():
        emb = model.encode(row['combined'], show_progress_bar=True).tolist()
        embeddings.append(emb)

    print("Finished computing embeddings for wikivoyage documents.")
    df['vector'] = embeddings
    # df.to_csv(wv_embeddings + "wikivoyage-listings-embeddings.csv")
    # print("Finished saving file.")
    return df


def embed_query(query):
    """
    
    Helper function that returns the embedded query. 

    Args:
        - query: str
    
    """
    model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
    # vector_dimension = model.get_sentence_embedding_dimension()   
    embedding = model.encode(query).tolist()
    return embedding


def set_uri(run_local: Optional[bool] = False):
    if run_local:
        uri = database_dir
        current_dir = os.path.split(os.getcwd())[1]

        if "src" or "tests" in current_dir:  # hacky way to get the correct path
            uri = uri.replace("../../", "../")
    else:
        uri = os.environ["BUCKET_NAME"]
    return uri