Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2Tokenizer
|
3 |
+
import torch
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# Load the model and tokenizer
|
7 |
+
model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
8 |
+
processor = ViTImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
|
9 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
10 |
+
|
11 |
+
# Streamlit app title
|
12 |
+
st.title("Image Captioning with ViT-GPT2 Model")
|
13 |
+
st.write("Upload an image, and the model will generate a descriptive caption.")
|
14 |
+
|
15 |
+
# File uploader for image input
|
16 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
|
17 |
+
|
18 |
+
if uploaded_file is not None:
|
19 |
+
# Load and display the uploaded image
|
20 |
+
image = Image.open(uploaded_file)
|
21 |
+
st.image(image, caption="Uploaded Image", use_column_width=True)
|
22 |
+
|
23 |
+
# Preprocess the image for the model
|
24 |
+
inputs = processor(images=image, return_tensors="pt")
|
25 |
+
pixel_values = inputs.pixel_values
|
26 |
+
|
27 |
+
# Generate the caption
|
28 |
+
with st.spinner("Generating caption..."):
|
29 |
+
output = model.generate(pixel_values)
|
30 |
+
caption = tokenizer.decode(output[0], skip_special_tokens=True)
|
31 |
+
|
32 |
+
# Display the generated caption
|
33 |
+
st.success("Generated Caption:")
|
34 |
+
st.write(caption)
|