ashok2216 commited on
Commit
bb8c731
·
verified ·
1 Parent(s): ce770b3

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +34 -0
app.py ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2Tokenizer
3
+ import torch
4
+ from PIL import Image
5
+
6
+ # Load the model and tokenizer
7
+ model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
8
+ processor = ViTImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
9
+ tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
10
+
11
+ # Streamlit app title
12
+ st.title("Image Captioning with ViT-GPT2 Model")
13
+ st.write("Upload an image, and the model will generate a descriptive caption.")
14
+
15
+ # File uploader for image input
16
+ uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "png", "jpeg"])
17
+
18
+ if uploaded_file is not None:
19
+ # Load and display the uploaded image
20
+ image = Image.open(uploaded_file)
21
+ st.image(image, caption="Uploaded Image", use_column_width=True)
22
+
23
+ # Preprocess the image for the model
24
+ inputs = processor(images=image, return_tensors="pt")
25
+ pixel_values = inputs.pixel_values
26
+
27
+ # Generate the caption
28
+ with st.spinner("Generating caption..."):
29
+ output = model.generate(pixel_values)
30
+ caption = tokenizer.decode(output[0], skip_special_tokens=True)
31
+
32
+ # Display the generated caption
33
+ st.success("Generated Caption:")
34
+ st.write(caption)