ashok2216 commited on
Commit
20df221
·
verified ·
1 Parent(s): d107678

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +231 -0
app.py ADDED
@@ -0,0 +1,231 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ '''Copyright 2024 Ashok Kumar
2
+
3
+ Licensed under the Apache License, Version 2.0 (the "License");
4
+ you may not use this file except in compliance with the License.
5
+ You may obtain a copy of the License at
6
+
7
+ http://www.apache.org/licenses/LICENSE-2.0
8
+
9
+ Unless required by applicable law or agreed to in writing, software
10
+ distributed under the License is distributed on an "AS IS" BASIS,
11
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ See the License for the specific language governing permissions and
13
+ limitations under the License.'''
14
+
15
+ import os
16
+ import requests
17
+ import json
18
+ import pandas as pd
19
+ import numpy as np
20
+ import requests
21
+ import geopandas as gpd
22
+ import contextily as ctx
23
+ import tzlocal
24
+ import pytz
25
+ from PIL import Image
26
+ from datetime import datetime
27
+ import matplotlib.pyplot as plt
28
+ from geopy.exc import GeocoderTimedOut
29
+ from geopy.geocoders import Nominatim
30
+ import warnings
31
+ warnings.filterwarnings('ignore')
32
+ from plotly.graph_objs import Marker
33
+ import plotly.express as px
34
+ import streamlit as st
35
+ from data import flight_data
36
+ from huggingface_hub import InferenceApi, login, InferenceClient
37
+
38
+
39
+ hf_token = os.getenv("HF_TOKEN")
40
+ if hf_token is None:
41
+ raise ValueError("Hugging Face token not found. Please set the HF_TOKEN environment variable.")
42
+ login(hf_token)
43
+
44
+
45
+ API_URL = "https://api-inference.huggingface.co/models/google/tapas-base-finetuned-wtq"
46
+ headers = {"Authorization": f"Bearer {hf_token}"}
47
+
48
+ def query(payload):
49
+ response = requests.post(API_URL, headers=headers, json=payload)
50
+ return response.json()
51
+
52
+ def query_flight_data(geo_df, question):
53
+
54
+
55
+ table_data = {
56
+ "icao24": geo_df["icao24"].astype(str).iloc[:100].tolist(),
57
+ "callsign": geo_df["callsign"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
58
+ "origin_country": geo_df["origin_country"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(),
59
+ "time_position": geo_df["time_position"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
60
+ "last_contact": geo_df["last_contact"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
61
+ "longitude": geo_df["longitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
62
+ "latitude": geo_df["latitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
63
+ "baro_altitude": geo_df["baro_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
64
+ "on_ground": geo_df["on_ground"].astype(str).iloc[:100].tolist(), # Assuming on_ground is boolean or categorical
65
+ "velocity": geo_df["velocity"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
66
+ "true_track": geo_df["true_track"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
67
+ "vertical_rate": geo_df["vertical_rate"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
68
+ "sensors": geo_df["sensors"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming sensors can be None
69
+ "geo_altitude": geo_df["geo_altitude"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
70
+ "squawk": geo_df["squawk"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist(), # Assuming squawk can be None
71
+ "spi": geo_df["spi"].astype(str).iloc[:100].tolist(), # Assuming spi is boolean or categorical
72
+ "position_source": geo_df["position_source"].astype(str).iloc[:100].tolist(), # Assuming position_source is categorical
73
+ "time": geo_df["time"].astype(str).replace({np.nan: '0', np.inf: '0'}).iloc[:100].tolist(),
74
+ "geometry": geo_df["geometry"].astype(str).replace({np.nan: None, np.inf: '0'}).iloc[:100].tolist() # Assuming geometry can be None
75
+ }
76
+
77
+
78
+ # Construct the payload
79
+ payload = {
80
+ "inputs": {
81
+ "query": question,
82
+ "table": table_data,
83
+ }
84
+ }
85
+
86
+ # Get the model response
87
+ response = query(payload)
88
+
89
+ # Check if 'answer' is in response and return it as a sentence
90
+ if 'answer' in response:
91
+ answer = response['answer']
92
+ return f"The answer to your question '{question}': :orange[{answer}]"
93
+ else:
94
+ return "The model could not find an answer to your question."
95
+
96
+
97
+ def flight_tracking(flight_view_level, country, local_time_zone, flight_info, airport, color):
98
+ geolocator = Nominatim(user_agent="flight_tracker")
99
+ loc = geolocator.geocode(country)
100
+ loc_box = loc[1]
101
+ extend_left =+12*flight_view_level
102
+ extend_right =+10*flight_view_level
103
+ extend_top =+10*flight_view_level
104
+ extend_bottom =+ 18*flight_view_level
105
+ lat_min, lat_max = (loc_box[0] - extend_left), loc_box[0]+extend_right
106
+ lon_min, lon_max = (loc_box[1] - extend_bottom), loc_box[1]+extend_top
107
+
108
+ tile_zoom = 8 # zoom of the map loaded by contextily
109
+ figsize = (15, 15)
110
+ columns = ["icao24","callsign","origin_country","time_position","last_contact","longitude","latitude",
111
+ "baro_altitude","on_ground","velocity","true_track","vertical_rate","sensors","geo_altitude",
112
+ "squawk","spi","position_source",]
113
+ data_url = "https://raw.githubusercontent.com/ashok2216-A/ashok_airport-data/main/data/airports.dat"
114
+ column_names = ["Airport ID", "Name", "City", "Country", "IATA/FAA", "ICAO", "Latitude", "Longitude",
115
+ "Altitude", "Timezone", "DST", "Tz database time zone", "Type", "Source"]
116
+ airport_df = pd.read_csv(data_url, header=None, names=column_names)
117
+ airport_locations = airport_df[["Name", "City", "Country", "IATA/FAA", "Latitude", "Longitude"]]
118
+ airport_country_loc = airport_locations[airport_locations['Country'] == str(loc)]
119
+ airport_country_loc = airport_country_loc[(airport_country_loc['Country'] == str(loc)) & (airport_country_loc['Latitude'] >= lat_min) &
120
+ (airport_country_loc['Latitude'] <= lat_max) & (airport_country_loc['Longitude'] >= lon_min) &
121
+ (airport_country_loc['Longitude'] <= lon_max)]
122
+ def get_traffic_gdf():
123
+ url_data = (
124
+ f"https://@opensky-network.org/api/states/all?"
125
+ f"lamin={str(lat_min)}"
126
+ f"&lomin={str(lon_min)}"
127
+ f"&lamax={str(lat_max)}"
128
+ f"&lomax={str(lon_max)}")
129
+ json_dict = requests.get(url_data).json()
130
+
131
+ unix_timestamp = int(json_dict["time"])
132
+ local_timezone = pytz.timezone(local_time_zone) # get pytz timezone
133
+ local_time = datetime.fromtimestamp(unix_timestamp, local_timezone).strftime('%Y-%m-%d %H:%M:%S')
134
+ time = []
135
+ for i in range(len(json_dict['states'])):
136
+ time.append(local_time)
137
+ df_time = pd.DataFrame(time,columns=['time'])
138
+ state_df = pd.DataFrame(json_dict["states"],columns=columns)
139
+ state_df['time'] = df_time
140
+ gdf = gpd.GeoDataFrame(
141
+ state_df,
142
+ geometry=gpd.points_from_xy(state_df.longitude, state_df.latitude),
143
+ crs={"init": "epsg:4326"}, # WGS84
144
+ )
145
+ # banner_image = Image.open('banner.png')
146
+ # st.image(banner_image, width=300)
147
+ st.title("Live Flight Tracker")
148
+ st.subheader('Flight Details', divider='rainbow')
149
+ st.write('Location: {0}'.format(loc))
150
+ st.write('Current Local Time: {0}-{1}:'.format(local_time, local_time_zone))
151
+ st.write("Minimum_latitude is {0} and Maximum_latitude is {1}".format(lat_min, lat_max))
152
+ st.write("Minimum_longitude is {0} and Maximum_longitude is {1}".format(lon_min, lon_max))
153
+ st.write('Number of Visible Flights: {}'.format(len(json_dict['states'])))
154
+ st.write('Plotting the flight: {}'.format(flight_info))
155
+ st.subheader('Map Visualization', divider='rainbow')
156
+ st.write('****Click ":orange[Update Map]" Button to Refresh the Map****')
157
+ return gdf
158
+
159
+ geo_df = get_traffic_gdf()
160
+ if airport == 0:
161
+ fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
162
+ color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
163
+ hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
164
+ 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
165
+ elif airport == 1:
166
+ fig = px.scatter_mapbox(geo_df, lat="latitude", lon="longitude",color=flight_info,
167
+ color_continuous_scale=color, zoom=4,width=1200, height=600,opacity=1,
168
+ hover_name ='origin_country',hover_data=['callsign', 'baro_altitude',
169
+ 'on_ground', 'velocity', 'true_track', 'vertical_rate', 'geo_altitude'], template='plotly_dark')
170
+ fig.add_trace(px.scatter_mapbox(airport_country_loc, lat="Latitude", lon="Longitude",
171
+ hover_name ='Name', hover_data=["City", "Country", "IATA/FAA"]).data[0])
172
+ else: None
173
+ fig.update_layout(mapbox_style="carto-darkmatter")
174
+ fig.update_layout(margin={"r": 0, "t": 0, "l": 0, "b": 0})
175
+ # out = fig.show())
176
+ out = st.plotly_chart(fig, theme=None)
177
+ return out
178
+ st.set_page_config(
179
+ layout="wide"
180
+ )
181
+ image = Image.open('logo.png')
182
+ add_selectbox = st.sidebar.image(
183
+ image, width=150
184
+ )
185
+ add_selectbox = st.sidebar.subheader(
186
+ "Configure Map",divider='rainbow'
187
+ )
188
+ with st.sidebar:
189
+ Refresh = st.button('Update Map', key=1)
190
+ on = st.toggle('View Airports')
191
+ if on:
192
+ air_port = 1
193
+ st.write(':rainbow[Nice Work Buddy!]')
194
+ st.write('Now Airports are Visible')
195
+ else:
196
+ air_port=0
197
+ view = st.slider('Increase Flight Visibility',1,6,2)
198
+ st.write("You Selected:", view)
199
+ cou = st.text_input('Type Country Name', 'north america')
200
+ st.write('The current Country name is', cou)
201
+ time = st.text_input('Type Time Zone Name (Ex: America/Toronto, Europe/Berlin)', 'Asia/Kolkata')
202
+ st.write('The current Time Zone is', time)
203
+ info = st.selectbox(
204
+ 'Select Flight Information',
205
+ ('baro_altitude',
206
+ 'on_ground', 'velocity',
207
+ 'geo_altitude'))
208
+ st.write('Plotting the data of Flight:', info)
209
+ clr = st.radio('Pick A Color for Scatter Plot',["rainbow","ice","hot"])
210
+ if clr == "rainbow":
211
+ st.write('The current color is', "****:rainbow[Rainbow]****")
212
+ elif clr == 'ice':
213
+ st.write('The current color is', "****:blue[Ice]****")
214
+ elif clr == 'hot':
215
+ st.write('The current color is', "****:red[Hot]****")
216
+ else: None
217
+ # with st.spinner('Wait!, We Requesting API Data...'):
218
+ # try:
219
+ flight_tracking(flight_view_level=view, country=cou,flight_info=info,
220
+ local_time_zone=time, airport=air_port, color=clr)
221
+ st.subheader('Ask your Questions!', divider='rainbow')
222
+ st.write("Google's TAPAS base LLM model 🤖")
223
+ geo_df = flight_data(flight_view_level = view, country= cou, flight_info=info, local_time_zone=time, airport=1)
224
+ question = st.text_input('Type your questions here', "What is the squawk code for SWR9XD?")
225
+ result = query_flight_data(geo_df, question)
226
+ st.markdown(result)
227
+ # except TypeError:
228
+ # st.error(':red[Error: ] Please Re-run this page.', icon="🚨")
229
+ # st.button('Re-run', type="primary")
230
+ # st.snow()
231
+