ashourzadeh7's picture
Update app.py
27d3684 verified
import gradio as gr
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import torch
# this model was loaded from https://hf.co/models
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-distilled-600M").to(device)
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
LANGS = ["pes_Arab", "ckb_Arab", "eng_Latn"]
langs_dict = {
"فارسی": "pes_Arab",
"کردی": "ckb_Arab",
"انگلیسی": "eng_Latn"
}
def translate(text, src_lang, tgt_lang):
"""
Translate the text from source lang to target lang
"""
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=langs_dict[src_lang], tgt_lang=langs_dict[tgt_lang], max_length=400, device=device)
result = translation_pipeline(text)
return result[0]['translation_text']
def file_translate(sorce_file_path, src_lang, tgt_lang, pred_file_path):
sorce_list = []
with open(sorce_file_path, "r", encoding="utf-8") as sorce_file:
for line in sorce_file:
sorce_list.append(line.strip())
pred_list = []
for line in sorce_list:
pred_list.append(translate(line, src_lang, tgt_lang))
with open(pred_file_path, "w", encoding="utf-8") as output_file:
for translation in pred_list:
output_file.write(translation + "\n")
return pred_file_path
def add_line(input_path, output_path):
# خواندن محتوای فایل ورودی
with open(input_path, encoding="utf-8") as f:
text = f.read()
# اضافه کردن خط "سلام" به انتهای متن
new_text = text + "\nسلام"
# نوشتن متن جدید در فایل خروجی
with open(output_path, "w", encoding="utf-8") as f:
f.write(new_text)
return output_path
if __name__ == '__main__':
interface = gr.Interface(
fn=file_translate,
inputs=[
gr.components.File(label="Input File"),
gr.components.Dropdown(label="زبان مبدا", choices=list(langs_dict.keys())),
gr.components.Dropdown(label="زبان مقصد", choices=list(langs_dict.keys())),
gr.components.Textbox(label="Output File Name (optional)"),
],
outputs=[
gr.components.File(label="Modified File"),
],
title="NLLB 200 - (Translation Demo)",
description="This Gradio demo translate text files. (CPU)",
)
interface.launch()