ashourzadeh7
commited on
Commit
•
cc91c93
1
Parent(s):
307f292
Update app.py
Browse files
app.py
CHANGED
@@ -1,29 +1,12 @@
|
|
1 |
-
import os
|
2 |
-
import torch
|
3 |
-
import gradio as gr
|
4 |
-
import time
|
5 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
-
from flores200_codes import flores_codes
|
7 |
-
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
12 |
-
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
13 |
-
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
14 |
-
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
15 |
-
}
|
16 |
-
|
17 |
-
model_dict = {}
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
model_dict[call_name+'_model'] = model
|
24 |
-
model_dict[call_name+'_tokenizer'] = tokenizer
|
25 |
|
26 |
-
return model_dict
|
27 |
|
28 |
LANGS = ["pes_Arab", "ckb_Arab", "eng_Latn"]
|
29 |
langs_dict = {
|
@@ -36,13 +19,7 @@ def translate(text, src_lang, tgt_lang):
|
|
36 |
"""
|
37 |
Translate the text from source lang to target lang
|
38 |
"""
|
39 |
-
|
40 |
-
if len(model_dict) == 2:
|
41 |
-
model_name = 'nllb-3.3B'
|
42 |
-
model = model_dict[model_name + '_model']
|
43 |
-
tokenizer = model_dict[model_name + '_tokenizer']
|
44 |
-
|
45 |
-
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=langs_dict[src_lang], tgt_lang=langs_dict[tgt_lang], max_length=400, device="cpu")
|
46 |
result = translation_pipeline(text)
|
47 |
return result[0]['translation_text']
|
48 |
|
@@ -76,12 +53,7 @@ def add_line(input_path, output_path):
|
|
76 |
return output_path
|
77 |
|
78 |
if __name__ == '__main__':
|
79 |
-
print('\tinit models')
|
80 |
-
|
81 |
-
#global model_dict
|
82 |
|
83 |
-
#model_dict = load_models()
|
84 |
-
|
85 |
interface = gr.Interface(
|
86 |
fn=file_translate,
|
87 |
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
3 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
+
# this model was loaded from https://hf.co/models
|
6 |
+
device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
7 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("facebook/nllb-200-1.3B").to(device)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-1.3B")
|
|
|
|
|
9 |
|
|
|
10 |
|
11 |
LANGS = ["pes_Arab", "ckb_Arab", "eng_Latn"]
|
12 |
langs_dict = {
|
|
|
19 |
"""
|
20 |
Translate the text from source lang to target lang
|
21 |
"""
|
22 |
+
translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=langs_dict[src_lang], tgt_lang=langs_dict[tgt_lang], max_length=400, device=device)
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
result = translation_pipeline(text)
|
24 |
return result[0]['translation_text']
|
25 |
|
|
|
53 |
return output_path
|
54 |
|
55 |
if __name__ == '__main__':
|
|
|
|
|
|
|
56 |
|
|
|
|
|
57 |
interface = gr.Interface(
|
58 |
fn=file_translate,
|
59 |
inputs=[
|