import os import torch import gradio as gr import time from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from flores200_codes import flores_codes def load_models(): # build model and tokenizer model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M', #'nllb-1.3B': 'facebook/nllb-200-1.3B', #'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', #'nllb-3.3B': 'facebook/nllb-200-3.3B', } model_dict = {} for call_name, real_name in model_name_dict.items(): print('\tLoading model: %s' % call_name) model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name+'_model'] = model model_dict[call_name+'_tokenizer'] = tokenizer return model_dict LANGS = ["pes_Arab", "ckb_Arab", "eng_Latn"] langs_dict = { "فارسی": "pes_Arab", "کردی": "ckb_Arab", "انگلیسی": "eng_Latn" } def translate(text, src_lang, tgt_lang): """ Translate the text from source lang to target lang """ if len(model_dict) == 2: model_name = 'nllb-3.3B' model = model_dict[model_name + '_model'] tokenizer = model_dict[model_name + '_tokenizer'] translation_pipeline = pipeline("translation", model=model, tokenizer=tokenizer, src_lang=langs_dict[src_lang], tgt_lang=langs_dict[tgt_lang], max_length=400, device="cpu") result = translation_pipeline(text) return result[0]['translation_text'] def file_translate(sorce_file_path, pred_file_path): sorce_list = [] with open(sorce_file_path, "r", encoding="utf-8") as sorce_file: for line in sorce_file: sorce_list.append(line.strip()) pred_list = [] for line in sorce_list: pred_list.append(translate(line, list(langs_dict.keys())[0], list(langs_dict.keys())[1])) with open(pred_file_path, "w", encoding="utf-8") as output_file: for translation in pred_list: output_file.write(translation + "\n") return pred_file_path def add_line(input_path, output_path): # خواندن محتوای فایل ورودی with open(input_path, encoding="utf-8") as f: text = f.read() # اضافه کردن خط "سلام" به انتهای متن new_text = text + "\nسلام" # نوشتن متن جدید در فایل خروجی with open(output_path, "w", encoding="utf-8") as f: f.write(new_text) return output_path if __name__ == '__main__': print('\tinit models') #global model_dict #model_dict = load_models() interface = gr.Interface( fn=add_line, inputs=[ gr.components.File(label="Input File"), gr.components.Textbox(label="Output File Name (optional)"), ], outputs=[ gr.components.File(label="Modified File"), ], title="Add 'Hello' Line to Text File", description="This Gradio demo adds the line 'Hello' to the end of a text file.", ) interface.launch()