File size: 7,937 Bytes
7d723ab efb7947 7d723ab b4b3852 a44bbef 7d723ab a44bbef 8a2c183 7d723ab a44bbef 7d723ab a44bbef 7d723ab a44bbef 7d723ab f6be918 7d723ab efb7947 7d723ab a44bbef 7d723ab a44bbef efb7947 7d723ab a44bbef 7d723ab a44bbef 7d723ab 8a2c183 7d723ab 64531d8 9911687 cc998eb 26615ae 7d723ab 26615ae 7d723ab 26615ae 7d723ab 26615ae 7d723ab 26615ae 7d723ab 26615ae 7d723ab 26615ae 7d723ab ff50814 7d723ab ff50814 a15bc89 ff50814 7d723ab 70abfd3 a44bbef 7d723ab 8985974 7d723ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os.path
import time as reqtime
import datetime
from pytz import timezone
import torch
import spaces
import gradio as gr
from x_transformer_1_23_2 import *
import random
import tqdm
import pprint
import io
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
in_space = os.getenv("SYSTEM") == "spaces"
# =================================================================================================
@spaces.GPU
def GenerateMusic():
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('Loading model...')
SEQ_LEN = 2048
PAD_IDX = 780
DEVICE = 'cpu' # 'cuda'
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024, depth = 32, heads = 16, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.to(DEVICE)
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(
torch.load('Descriptive_Music_Transformer_Trained_Model_20631_steps_0.3218_loss_0.8947_acc.pth',
map_location=DEVICE))
print('=' * 70)
model.eval()
if DEVICE == 'cpu':
dtype = torch.bfloat16
else:
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype)
print('Done!')
print('=' * 70)
input_num_tokens = 1024+512
print('-' * 70)
#===============================================================================
print('=' * 70)
print('Loading helper functions...')
def txt2tokens(txt):
return [ord(char)+648 if 0 < ord(char) < 128 else 0+648 for char in txt.lower()]
def tokens2txt(tokens):
return [chr(tok-648) for tok in tokens if 0+648 < tok < 128+648 ]
def pprint_to_string(obj, compact=True):
output = io.StringIO()
pprint.pprint(obj, stream=output, compact=compact)
return output.getvalue()
print('=' * 70)
print('Generating...')
#@title Standard Text-to-Music Generator
#@markdown Generation settings
number_of_tokens_to_generate = input_num_tokens
number_of_batches_to_generate = 1 #@param {type:"slider", min:1, max:16, step:1}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
print('=' * 70)
print('Descriptive Music Transformer Model Generator')
print('=' * 70)
outy = [777]
torch.cuda.empty_cache()
inp = [outy] * number_of_batches_to_generate
inp = torch.LongTensor(inp).cpu()
with ctx:
out = model.generate(inp,
number_of_tokens_to_generate,
temperature=temperature,
return_prime=True,
verbose=False)
out0 = out.tolist()
print('=' * 70)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
out1 = out0[0]
print('Sample INTs', out1[:12])
print('=' * 70)
descr = ''.join(tokens2txt(out1)).split('. ')
descr1 = descr[0].capitalize()
descr2 = descr[1].capitalize()
generated_song_description = str(pprint_to_string(descr1).replace(" '", "").replace("'", "")[1:-2] +'.\n\n' + pprint_to_string(descr2).replace("'", "").replace(" '", "")[1:-2])
if len(out1) != 0:
song = out1
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
pat = 0
channel = 0
for ss in song:
if 0 < ss < 128:
time += (ss * 32)
if 128 < ss < 256:
dur = (ss-128) * 32
if 256 <= ss <= 384:
pat = (ss-256)
channel = pat // 8
if channel == 9:
channel = 15
if channel == 16:
channel = 9
if 384 < ss < 640:
pitch = (ss-384) % 128
if 640 <= ss < 648:
vel = ((ss-640)+1) * 15
song_f.append(['note', time, dur, channel, pitch, vel, pat])
song_f, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f)
fn1 = "Descriptive-Music-Transformer-Composition"
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Descriptive Music Transformer',
output_file_name = fn1,
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1).replace('-', ' ')
output_midi_summary = str(generated_song_description)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', output_midi_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Descriptive Music Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>A music transformer that describes music it generates</h1>")
gr.Markdown(
"\n\n"
'This is a demo for Annotated MIDI Dataset.\n\n'
"Check out [Annotated MIDI Dataset](https://huggingface.co/datasets/asigalov61/Annotated-MIDI-Dataset) on Hugging Face!\n\n"
)
run_btn = gr.Button("generate", variant="primary")
gr.Markdown("## Generation results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Generated music description")
output_audio = gr.Audio(label="Output MIDI audio", format="wav", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(GenerateMusic, outputs=[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
app.queue().launch() |