Spaces:
Running
on
Zero
Running
on
Zero
#================================================================================== | |
# https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer | |
#================================================================================== | |
print('=' * 70) | |
print('Guided Accompaniment Transformer Gradio App') | |
print('=' * 70) | |
print('Loading core Guided Accompaniment Transformer modules...') | |
import os | |
import copy | |
import time as reqtime | |
import datetime | |
from pytz import timezone | |
print('=' * 70) | |
print('Loading main Guided Accompaniment Transformer modules...') | |
os.environ['USE_FLASH_ATTENTION'] = '1' | |
import torch | |
torch.set_float32_matmul_precision('medium') | |
torch.backends.cuda.matmul.allow_tf32 = True # allow tf32 on matmul | |
torch.backends.cudnn.allow_tf32 = True # allow tf32 on cudnn | |
torch.backends.cuda.enable_mem_efficient_sdp(True) | |
torch.backends.cuda.enable_math_sdp(True) | |
torch.backends.cuda.enable_flash_sdp(True) | |
torch.backends.cuda.enable_cudnn_sdp(True) | |
from huggingface_hub import hf_hub_download | |
import TMIDIX | |
from midi_to_colab_audio import midi_to_colab_audio | |
from x_transformer_1_23_2 import * | |
import random | |
import tqdm | |
print('=' * 70) | |
print('Loading aux Guided Accompaniment Transformer modules...') | |
import matplotlib.pyplot as plt | |
import gradio as gr | |
import spaces | |
print('=' * 70) | |
print('PyTorch version:', torch.__version__) | |
print('=' * 70) | |
print('Done!') | |
print('Enjoy! :)') | |
print('=' * 70) | |
#================================================================================== | |
MODEL_CHECKPOINT = 'Guided_Accompaniment_Transformer_Trained_Model_36457_steps_0.5384_loss_0.8417_acc.pth' | |
SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' | |
MAX_MELODY_NOTES = 64 | |
MAX_GEN_TOKS = 3072 | |
#================================================================================== | |
print('=' * 70) | |
print('Loading popular hook melodies dataset...') | |
popular_hook_melodies_pickle = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', | |
filename='popular_hook_melodies_24_64_CC_BY_NC_SA.pickle' | |
) | |
popular_hook_melodies = TMIDIX.Tegridy_Any_Pickle_File_Reader(popular_hook_melodies_pickle) | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#================================================================================== | |
print('=' * 70) | |
print('Instantiating model...') | |
device_type = 'cuda' | |
dtype = 'bfloat16' | |
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] | |
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) | |
SEQ_LEN = 4096 | |
PAD_IDX = 1794 | |
model = TransformerWrapper( | |
num_tokens = PAD_IDX+1, | |
max_seq_len = SEQ_LEN, | |
attn_layers = Decoder(dim = 2048, | |
depth = 4, | |
heads = 32, | |
rotary_pos_emb = True, | |
attn_flash = True | |
) | |
) | |
model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) | |
print('=' * 70) | |
print('Loading model checkpoint...') | |
model_checkpoint = hf_hub_download(repo_id='asigalov61/Guided-Accompaniment-Transformer', filename=MODEL_CHECKPOINT) | |
model.load_state_dict(torch.load(model_checkpoint, map_location='cpu', weights_only=True)) | |
model = torch.compile(model, mode='max-autotune') | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
print('Model will use', dtype, 'precision...') | |
print('=' * 70) | |
#================================================================================== | |
def load_midi(input_midi, melody_patch=-1, use_nth_note=1): | |
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) | |
escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] | |
escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes, timings_divider=32) | |
sp_escore_notes = TMIDIX.solo_piano_escore_notes(escore_notes, keep_drums=False) | |
if melody_patch == -1: | |
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) | |
else: | |
mel_score = [e for e in sp_escore_notes if e[6] == melody_patch] | |
if mel_score: | |
zscore = TMIDIX.recalculate_score_timings(mel_score) | |
else: | |
zscore = TMIDIX.recalculate_score_timings(sp_escore_notes) | |
cscore = TMIDIX.chordify_score([1000, zscore])[:MAX_MELODY_NOTES:use_nth_note] | |
score = [] | |
score_list = [] | |
pc = cscore[0] | |
for c in cscore: | |
score.append(max(0, min(127, c[0][1]-pc[0][1]))) | |
scl = [[max(0, min(127, c[0][1]-pc[0][1]))]] | |
n = c[0] | |
score.extend([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256]) | |
scl.append([max(1, min(127, n[2]))+128, max(1, min(127, n[4]))+256]) | |
score_list.append(scl) | |
pc = c | |
score_list.append(scl) | |
return score, score_list | |
#================================================================================== | |
def Generate_Accompaniment(input_midi, | |
input_melody, | |
melody_patch, | |
use_nth_note, | |
model_temperature, | |
model_sampling_top_k | |
): | |
#=============================================================================== | |
def generate_full_seq(input_seq, | |
max_toks=3072, | |
temperature=0.9, | |
top_k_value=15, | |
verbose=True | |
): | |
seq_abs_run_time = sum([t for t in input_seq if t < 128]) | |
cur_time = 0 | |
full_seq = copy.deepcopy(input_seq) | |
toks_counter = 0 | |
while cur_time <= seq_abs_run_time+32: | |
if verbose: | |
if toks_counter % 128 == 0: | |
print('Generated', toks_counter, 'tokens') | |
x = torch.LongTensor(full_seq).cuda() | |
with ctx: | |
out = model.generate(x, | |
1, | |
filter_logits_fn=top_k, | |
filter_kwargs={'k': top_k_value}, | |
temperature=temperature, | |
return_prime=False, | |
verbose=False) | |
y = out.tolist()[0][0] | |
if y < 128: | |
cur_time += y | |
full_seq.append(y) | |
toks_counter += 1 | |
if toks_counter == max_toks: | |
return full_seq | |
return full_seq | |
#=============================================================================== | |
print('=' * 70) | |
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
start_time = reqtime.time() | |
print('=' * 70) | |
print('=' * 70) | |
print('Requested settings:') | |
print('=' * 70) | |
if input_midi: | |
fn = os.path.basename(input_midi) | |
fn1 = fn.split('.')[0] | |
print('Input MIDI file name:', fn) | |
else: | |
print('Input sample melody:', input_melody) | |
print('Source melody patch:', melody_patch) | |
print('Use nth melody note:', use_nth_note) | |
print('Model temperature:', model_temperature) | |
print('Model top k:', model_sampling_top_k) | |
print('=' * 70) | |
#================================================================== | |
print('Prepping melody...') | |
if input_midi: | |
inp_mel = 'Custom MIDI' | |
score, score_list = load_midi(input_midi.name, melody_patch, use_nth_note) | |
else: | |
mel_list = [m[0].lower() for m in popular_hook_melodies] | |
inp_mel = random.choice(mel_list).title() | |
for m in mel_list: | |
if input_melody.lower().strip() in m: | |
inp_mel = m.title() | |
break | |
score = popular_hook_melodies[[m[0] for m in popular_hook_melodies].index(inp_mel)][1] | |
score_list = [[[score[i]], score[i+1:i+3]] for i in range(0, len(score)-3, 3)] | |
print('Selected melody:', inp_mel) | |
print('Sample score events', score[:12]) | |
#================================================================== | |
print('=' * 70) | |
print('Generating...') | |
model.to(device_type) | |
model.eval() | |
#================================================================== | |
start_score_seq = [1792] + score + [1793] | |
#================================================================== | |
input_seq = generate_full_seq(start_score_seq, | |
max_toks=MAX_GEN_TOKS, | |
temperature=model_temperature, | |
top_k_value=model_sampling_top_k, | |
) | |
final_song = input_seq[len(start_score_seq):] | |
print('=' * 70) | |
print('Done!') | |
print('=' * 70) | |
#=============================================================================== | |
print('Rendering results...') | |
print('=' * 70) | |
print('Sample INTs', final_song[:15]) | |
print('=' * 70) | |
song_f = [] | |
if len(final_song) != 0: | |
time = 0 | |
dur = 0 | |
vel = 90 | |
pitch = 0 | |
channel = 0 | |
patch = 0 | |
channels_map = [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 9, 12, 13, 14, 15] | |
patches_map = [40, 0, 10, 19, 24, 35, 40, 52, 56, 9, 65, 73, 0, 0, 0, 0] | |
velocities_map = [125, 80, 100, 80, 90, 100, 100, 80, 110, 110, 110, 110, 80, 80, 80, 80] | |
for m in final_song: | |
if 0 <= m < 128: | |
time += m * 32 | |
elif 128 < m < 256: | |
dur = (m-128) * 32 | |
elif 256 < m < 1792: | |
cha = (m-256) // 128 | |
pitch = (m-256) % 128 | |
channel = channels_map[cha] | |
patch = patches_map[channel] | |
vel = velocities_map[channel] | |
song_f.append(['note', time, dur, channel, pitch, vel, patch]) | |
fn1 = "Guided-Accompaniment-Transformer-Composition" | |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, | |
output_signature = 'Guided Accompaniment Transformer', | |
output_file_name = fn1, | |
track_name='Project Los Angeles', | |
list_of_MIDI_patches=patches_map | |
) | |
new_fn = fn1+'.mid' | |
audio = midi_to_colab_audio(new_fn, | |
soundfont_path=SOUDFONT_PATH, | |
sample_rate=16000, | |
volume_scale=10, | |
output_for_gradio=True | |
) | |
print('Done!') | |
print('=' * 70) | |
#======================================================== | |
output_title = str(inp_mel) | |
output_midi = str(new_fn) | |
output_audio = (16000, audio) | |
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True) | |
print('Output MIDI file name:', output_midi) | |
print('Output MIDI melody title:', output_title) | |
print('=' * 70) | |
#======================================================== | |
print('-' * 70) | |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('-' * 70) | |
print('Req execution time:', (reqtime.time() - start_time), 'sec') | |
return output_title, output_audio, output_plot, output_midi | |
#================================================================================== | |
PDT = timezone('US/Pacific') | |
print('=' * 70) | |
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) | |
print('=' * 70) | |
#================================================================================== | |
with gr.Blocks() as demo: | |
#================================================================================== | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>") | |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>") | |
gr.HTML(""" | |
<p> | |
<a href="https://huggingface.co/spaces/asigalov61/Guided-Accompaniment-Transformer?duplicate=true"> | |
<img src="https://huggingface.co/datasets/huggingface/badges/resolve/main/duplicate-this-space-md.svg" alt="Duplicate in Hugging Face"> | |
</a> | |
</p> | |
for faster execution and endless generation! | |
""") | |
#================================================================================== | |
gr.Markdown("## Upload source melody MIDI or enter a search query for a sample melody below") | |
input_midi = gr.File(label="Input MIDI", | |
file_types=[".midi", ".mid", ".kar"] | |
) | |
input_melody = gr.Textbox(value="Hotel California", | |
label="Popular melodies database search query", | |
info='If the query is not found, random melody will be selected. Custom MIDI overrides search query' | |
) | |
gr.Markdown("## Generation options") | |
melody_patch = gr.Slider(-1, 127, value=-1, step=1, label="Source melody MIDI patch") | |
use_nth_note = gr.Slider(1, 8, value=1, step=1, label="Use each nth melody note") | |
model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") | |
model_sampling_top_k = gr.Slider(1, 100, value=15, step=1, label="Model sampling top k value") | |
generate_btn = gr.Button("Generate", variant="primary") | |
gr.Markdown("## Generation results") | |
output_title = gr.Textbox(label="MIDI melody title") | |
output_audio = gr.Audio(label="MIDI audio", format="wav", elem_id="midi_audio") | |
output_plot = gr.Plot(label="MIDI score plot") | |
output_midi = gr.File(label="MIDI file", file_types=[".mid"]) | |
generate_btn.click(Generate_Accompaniment, | |
[input_midi, | |
input_melody, | |
melody_patch, | |
use_nth_note, | |
model_temperature, | |
model_sampling_top_k | |
], | |
[output_title, | |
output_audio, | |
output_plot, | |
output_midi | |
] | |
) | |
gr.Examples( | |
[["USSR-National-Anthem-Seed-Melody.mid", "Custom MIDI", -1, 1, 0.9, 15], | |
["Sparks-Fly-Seed-Melody.mid", "Custom MIDI", -1, 1, 0.9, 15] | |
], | |
[input_midi, | |
input_melody, | |
melody_patch, | |
use_nth_note, | |
model_temperature, | |
model_sampling_top_k | |
], | |
[output_title, | |
output_audio, | |
output_plot, | |
output_midi | |
], | |
Generate_Accompaniment | |
) | |
#================================================================================== | |
demo.launch() | |
#================================================================================== |