Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -198,185 +198,141 @@ def save_midi(tokens, batch_number=None, model_selector=''):
|
|
198 |
#==================================================================================
|
199 |
|
200 |
@spaces.GPU
|
201 |
-
def
|
202 |
num_gen_tokens,
|
203 |
model_temperature
|
204 |
):
|
205 |
|
206 |
-
|
207 |
-
|
|
|
|
|
|
|
|
|
208 |
|
209 |
-
|
210 |
-
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
217 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
print('Generating...')
|
|
|
|
|
|
|
|
|
|
|
219 |
|
220 |
-
|
|
|
|
|
221 |
|
222 |
-
|
223 |
|
224 |
-
|
225 |
-
out = model.generate(inp,
|
226 |
-
num_gen_tokens,
|
227 |
-
#filter_logits_fn=top_p,
|
228 |
-
#filter_kwargs={'thres': model_sampling_top_p},
|
229 |
-
temperature=model_temperature,
|
230 |
-
return_prime=False,
|
231 |
-
verbose=False)
|
232 |
|
233 |
-
output = out.tolist()
|
234 |
-
|
235 |
-
print('Done!')
|
236 |
print('=' * 70)
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
#==================================================================================
|
241 |
|
242 |
-
|
243 |
-
num_prime_tokens,
|
244 |
-
num_gen_tokens,
|
245 |
-
num_mem_tokens,
|
246 |
-
model_temperature,
|
247 |
-
# model_sampling_top_p,
|
248 |
-
final_composition,
|
249 |
-
generated_batches,
|
250 |
-
block_lines,
|
251 |
-
model_state
|
252 |
-
):
|
253 |
-
|
254 |
-
generated_batches = []
|
255 |
-
|
256 |
-
if not final_composition and input_midi is not None:
|
257 |
-
final_composition = load_midi(input_midi, model_selector=model_state[2])[:num_prime_tokens]
|
258 |
-
midi_score = save_midi(final_composition, model_selector=model_state[2])
|
259 |
-
block_lines.append(midi_score[-1][1] / 1000)
|
260 |
-
|
261 |
-
batched_gen_tokens = generate_music(final_composition,
|
262 |
-
num_gen_tokens,
|
263 |
-
num_mem_tokens,
|
264 |
-
NUM_OUT_BATCHES,
|
265 |
-
model_temperature,
|
266 |
-
# model_sampling_top_p,
|
267 |
-
model_state
|
268 |
-
)
|
269 |
|
270 |
-
|
271 |
|
272 |
-
|
273 |
-
|
274 |
-
|
|
|
|
|
|
|
275 |
|
276 |
-
|
277 |
-
tokens_preview = final_composition[-PREVIEW_LENGTH:]
|
278 |
|
279 |
-
|
280 |
-
midi_score = save_midi(tokens_preview + tokens, i, model_selector=model_state[2])
|
281 |
-
|
282 |
-
# MIDI plot
|
283 |
-
|
284 |
-
if len(final_composition) > PREVIEW_LENGTH:
|
285 |
-
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
|
286 |
-
plot_title='Batch # ' + str(i),
|
287 |
-
preview_length_in_notes=int(PREVIEW_LENGTH / 3),
|
288 |
-
return_plt=True
|
289 |
-
)
|
290 |
-
|
291 |
-
else:
|
292 |
-
midi_plot = TMIDIX.plot_ms_SONG(midi_score,
|
293 |
-
plot_title='Batch # ' + str(i),
|
294 |
-
return_plt=True
|
295 |
-
)
|
296 |
-
|
297 |
-
# File name
|
298 |
-
fname = 'Guided-Accompaniment-Transformer-Music-Composition_'+str(i)
|
299 |
|
300 |
-
|
301 |
-
midi_audio = midi_to_colab_audio(fname + '.mid',
|
302 |
-
soundfont_path=SOUDFONT_PATH,
|
303 |
-
sample_rate=16000,
|
304 |
-
output_for_gradio=True
|
305 |
-
)
|
306 |
-
|
307 |
-
outputs.append([(16000, midi_audio), midi_plot, tokens])
|
308 |
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
):
|
325 |
|
326 |
-
|
327 |
-
|
328 |
-
|
|
|
|
|
|
|
|
|
|
|
329 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
330 |
print('=' * 70)
|
331 |
-
if input_midi is not None:
|
332 |
-
fn = os.path.basename(input_midi.name)
|
333 |
-
fn1 = fn.split('.')[0]
|
334 |
-
print('Input file name:', fn)
|
335 |
|
336 |
-
|
337 |
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
else:
|
343 |
-
if model_selector != model_state[2]:
|
344 |
-
print('=' * 70)
|
345 |
-
print('Switching model...')
|
346 |
-
model_state = load_model(model_selector)
|
347 |
-
model_state.append(model_selector)
|
348 |
-
print('=' * 70)
|
349 |
-
|
350 |
-
print('Num prime tokens:', num_prime_tokens)
|
351 |
-
print('Num gen tokens:', num_gen_tokens)
|
352 |
-
print('Num mem tokens:', num_mem_tokens)
|
353 |
-
|
354 |
-
print('Model temp:', model_temperature)
|
355 |
-
# print('Model top_p:', model_sampling_top_p)
|
356 |
-
print('=' * 70)
|
357 |
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
final_composition,
|
365 |
-
generated_batches,
|
366 |
-
block_lines,
|
367 |
-
model_state
|
368 |
-
)
|
369 |
|
370 |
-
generated_batches = [sublist[-1] for sublist in result[0]]
|
371 |
|
372 |
-
|
|
|
|
|
373 |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
374 |
-
print('
|
375 |
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
376 |
-
print('*' * 70)
|
377 |
-
|
378 |
-
return tuple([result[1], generated_batches, result[3]] + [item for sublist in result[0] for item in sublist[:-1]] + [model_state])
|
379 |
|
|
|
|
|
380 |
#==================================================================================
|
381 |
|
382 |
PDT = timezone('US/Pacific')
|
@@ -391,10 +347,6 @@ with gr.Blocks() as demo:
|
|
391 |
|
392 |
#==================================================================================
|
393 |
|
394 |
-
demo.load(reset_demo)
|
395 |
-
|
396 |
-
#==================================================================================
|
397 |
-
|
398 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>")
|
399 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>")
|
400 |
gr.HTML("""
|
@@ -435,7 +387,7 @@ with gr.Blocks() as demo:
|
|
435 |
|
436 |
outputs.extend([model_state])
|
437 |
|
438 |
-
generate_btn.click(
|
439 |
[input_midi,
|
440 |
num_gen_tokens,
|
441 |
model_temperature
|
@@ -446,11 +398,27 @@ with gr.Blocks() as demo:
|
|
446 |
output_midi,
|
447 |
]
|
448 |
)
|
449 |
-
|
450 |
-
#==================================================================================
|
451 |
-
|
452 |
-
demo.unload(reset_demo)
|
453 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
454 |
#==================================================================================
|
455 |
|
456 |
demo.launch()
|
|
|
198 |
#==================================================================================
|
199 |
|
200 |
@spaces.GPU
|
201 |
+
def Generate_Accompaniment(input_midi,
|
202 |
num_gen_tokens,
|
203 |
model_temperature
|
204 |
):
|
205 |
|
206 |
+
#===============================================================================
|
207 |
+
|
208 |
+
print('=' * 70)
|
209 |
+
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
210 |
+
start_time = reqtime.time()
|
211 |
+
print('=' * 70)
|
212 |
|
213 |
+
fn = os.path.basename(input_midi)
|
214 |
+
fn1 = fn.split('.')[0]
|
215 |
|
216 |
+
print('=' * 70)
|
217 |
+
print('Requested settings:')
|
218 |
+
print('=' * 70)
|
219 |
+
print('Input MIDI file name:', fn)
|
220 |
+
print('Input MIDI type:', input_midi_type)
|
221 |
+
print('Conversion type:', input_conv_type)
|
222 |
+
print('Number of prime notes:', input_number_prime_notes)
|
223 |
+
print('Number of notes to convert:', input_number_conv_notes)
|
224 |
+
print('Model durations sampling top value:', input_model_dur_top_k)
|
225 |
+
print('Model durations temperature:', input_model_dur_temperature)
|
226 |
+
print('Model velocities temperature:', input_model_vel_temperature)
|
227 |
+
|
228 |
+
print('=' * 70)
|
229 |
|
230 |
+
#==================================================================
|
231 |
+
|
232 |
+
src_melody_chords_f = load_midi(input_midi.name)
|
233 |
+
|
234 |
+
#==================================================================
|
235 |
+
|
236 |
+
print('Sample output events', src_melody_chords_f[0][1][:3])
|
237 |
+
print('=' * 70)
|
238 |
print('Generating...')
|
239 |
+
|
240 |
+
model.to(DEVICE)
|
241 |
+
model.eval()
|
242 |
+
|
243 |
+
#==================================================================
|
244 |
|
245 |
+
print('=' * 70)
|
246 |
+
print('Done!')
|
247 |
+
print('=' * 70)
|
248 |
|
249 |
+
#===============================================================================
|
250 |
|
251 |
+
print('Rendering results...')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
252 |
|
|
|
|
|
|
|
253 |
print('=' * 70)
|
254 |
+
print('Sample INTs', final_song[:15])
|
255 |
+
print('=' * 70)
|
|
|
|
|
256 |
|
257 |
+
song_f = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
|
259 |
+
if len(final_song) != 0:
|
260 |
|
261 |
+
time = 0
|
262 |
+
dur = 0
|
263 |
+
vel = 90
|
264 |
+
pitch = 60
|
265 |
+
channel = 0
|
266 |
+
patch = 0
|
267 |
|
268 |
+
patches = [0] * 16
|
|
|
269 |
|
270 |
+
for ss in final_song:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
+
if 0 <= ss < 256:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
time += ss * 16
|
275 |
+
|
276 |
+
if 256 <= ss < 384:
|
277 |
+
|
278 |
+
pitch = ss-256
|
279 |
+
|
280 |
+
if 384 <= ss < 640:
|
281 |
+
|
282 |
+
dur = (ss-384) * 16
|
283 |
+
|
284 |
+
if 640 <= ss < 768:
|
285 |
+
|
286 |
+
vel = (ss-640)
|
287 |
+
|
288 |
+
song_f.append(['note', time, dur, channel, pitch, vel, patch])
|
|
|
289 |
|
290 |
+
fn1 = "Score-2-Performance-Transformer-Composition"
|
291 |
+
|
292 |
+
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
293 |
+
output_signature = 'Score 2 Performance Transformer',
|
294 |
+
output_file_name = fn1,
|
295 |
+
track_name='Project Los Angeles',
|
296 |
+
list_of_MIDI_patches=patches
|
297 |
+
)
|
298 |
|
299 |
+
new_fn = fn1+'.mid'
|
300 |
+
|
301 |
+
|
302 |
+
audio = midi_to_colab_audio(new_fn,
|
303 |
+
soundfont_path=soundfont,
|
304 |
+
sample_rate=16000,
|
305 |
+
volume_scale=10,
|
306 |
+
output_for_gradio=True
|
307 |
+
)
|
308 |
+
|
309 |
+
print('Done!')
|
310 |
print('=' * 70)
|
|
|
|
|
|
|
|
|
311 |
|
312 |
+
#========================================================
|
313 |
|
314 |
+
output_midi_title = str(fn1)
|
315 |
+
output_midi_summary = str(song_f[:3])
|
316 |
+
output_midi = str(new_fn)
|
317 |
+
output_audio = (16000, audio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
318 |
|
319 |
+
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi, return_plt=True)
|
320 |
+
|
321 |
+
print('Output MIDI file name:', output_midi)
|
322 |
+
print('Output MIDI title:', output_midi_title)
|
323 |
+
print('Output MIDI summary:', output_midi_summary)
|
324 |
+
print('=' * 70)
|
|
|
|
|
|
|
|
|
|
|
325 |
|
|
|
326 |
|
327 |
+
#========================================================
|
328 |
+
|
329 |
+
print('-' * 70)
|
330 |
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
|
331 |
+
print('-' * 70)
|
332 |
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
|
|
|
|
|
|
333 |
|
334 |
+
return output_midi, output_audio, output_plot
|
335 |
+
|
336 |
#==================================================================================
|
337 |
|
338 |
PDT = timezone('US/Pacific')
|
|
|
347 |
|
348 |
#==================================================================================
|
349 |
|
|
|
|
|
|
|
|
|
350 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided Accompaniment Transformer</h1>")
|
351 |
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Guided melody accompaniment generation with transformers</h1>")
|
352 |
gr.HTML("""
|
|
|
387 |
|
388 |
outputs.extend([model_state])
|
389 |
|
390 |
+
generate_btn.click(Generate_Accompaniment,
|
391 |
[input_midi,
|
392 |
num_gen_tokens,
|
393 |
model_temperature
|
|
|
398 |
output_midi,
|
399 |
]
|
400 |
)
|
|
|
|
|
|
|
|
|
401 |
|
402 |
+
'''gr.Examples(
|
403 |
+
[["asap_midi_score_21.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
|
404 |
+
["asap_midi_score_45.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
|
405 |
+
["asap_midi_score_69.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
|
406 |
+
["asap_midi_score_118.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
|
407 |
+
["asap_midi_score_167.mid", "Score", "Durations and Velocities", 8, 600, 1, 1.1, 1.5],
|
408 |
+
],
|
409 |
+
[input_midi,
|
410 |
+
input_midi_type,
|
411 |
+
input_conv_type,
|
412 |
+
input_number_prime_notes,
|
413 |
+
input_number_conv_notes,
|
414 |
+
input_model_dur_top_k,
|
415 |
+
input_model_dur_temperature,
|
416 |
+
input_model_vel_temperature
|
417 |
+
],
|
418 |
+
[output_midi_title, output_midi_summary, output_midi, output_audio, output_plot],
|
419 |
+
Convert_Score_to_Performance
|
420 |
+
)'''
|
421 |
+
|
422 |
#==================================================================================
|
423 |
|
424 |
demo.launch()
|