|
|
|
|
|
import os.path |
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import torch |
|
|
|
import spaces |
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
import tqdm |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
from sklearn.metrics import pairwise |
|
|
|
|
|
|
|
def hsv_to_rgb(h, s, v): |
|
if s == 0.0: |
|
return v, v, v |
|
i = int(h*6.0) |
|
f = (h*6.0) - i |
|
p = v*(1.0 - s) |
|
q = v*(1.0 - s*f) |
|
t = v*(1.0 - s*(1.0-f)) |
|
i = i%6 |
|
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] |
|
|
|
def generate_colors(n): |
|
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] |
|
|
|
def add_arrays(a, b): |
|
return [sum(pair) for pair in zip(a, b)] |
|
|
|
def plot_ms_SONG(ms_song, |
|
preview_length_in_notes=0, |
|
block_lines_times_list = None, |
|
plot_title='ms Song', |
|
max_num_colors=129, |
|
drums_color_num=128, |
|
plot_size=(11,4), |
|
note_height = 0.75, |
|
show_grid_lines=False, |
|
return_plt = False, |
|
timings_multiplier=1, |
|
plot_curve_values=None, |
|
plot_curve_notes_step=200, |
|
save_plot='' |
|
): |
|
|
|
'''Tegridy ms SONG plotter/vizualizer''' |
|
|
|
notes = [s for s in ms_song if s[0] == 'note'] |
|
|
|
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): |
|
print('The song notes do not have patches information') |
|
print('Please add patches to the notes in the song') |
|
|
|
else: |
|
|
|
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes] |
|
durations = [(s[2] * timings_multiplier) / 1000 for s in notes] |
|
pitches = [s[4] for s in notes] |
|
patches = [s[6] for s in notes] |
|
|
|
colors = generate_colors(max_num_colors) |
|
colors[drums_color_num] = (1, 1, 1) |
|
|
|
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000 |
|
|
|
fig, ax = plt.subplots(figsize=plot_size) |
|
|
|
|
|
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): |
|
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) |
|
ax.add_patch(rect) |
|
|
|
if plot_curve_values is not None: |
|
|
|
stimes = start_times[plot_curve_notes_step // 2::plot_curve_notes_step] |
|
|
|
min_val = min(plot_curve_values) |
|
max_val = max(plot_curve_values) |
|
spcva = [((value - min_val) / (max(max_val - min_val, 0.00001))) * 100 for value in plot_curve_values] |
|
|
|
ax.plot(stimes, spcva, marker='o', linestyle='-', color='w') |
|
|
|
|
|
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) |
|
ax.set_ylim([min(spcva), max(spcva)]) |
|
|
|
|
|
ax.set_facecolor('black') |
|
fig.patch.set_facecolor('white') |
|
|
|
if preview_length_in_notes > 0: |
|
ax.axvline(x=pbl, c='white') |
|
|
|
if block_lines_times_list: |
|
for bl in block_lines_times_list: |
|
ax.axvline(x=bl, c='white') |
|
|
|
if show_grid_lines: |
|
ax.grid(color='white') |
|
|
|
plt.xlabel('Time (s)', c='black') |
|
plt.ylabel('MIDI Pitch', c='black') |
|
|
|
plt.title(plot_title) |
|
|
|
if return_plt: |
|
return fig |
|
|
|
if save_plot == '': |
|
plt.show() |
|
|
|
else: |
|
plt.savefig(save_plot) |
|
|
|
|
|
|
|
def read_MIDI(input_midi): |
|
|
|
|
|
raw_score = TMIDIX.midi2single_track_ms_score(input_midi) |
|
|
|
|
|
|
|
|
|
events_matrix1 = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0] |
|
|
|
|
|
|
|
|
|
instruments_list = list(set([y[3] for y in events_matrix1])) |
|
|
|
|
|
|
|
events_matrix1 = TMIDIX.augment_enhanced_score_notes(events_matrix1, timings_divider=16) |
|
|
|
|
|
|
|
|
|
melody_chords = [] |
|
melody_chords2 = [] |
|
|
|
|
|
|
|
if 9 in instruments_list: |
|
drums_present = 19331 |
|
else: |
|
drums_present = 19330 |
|
|
|
if events_matrix1[0][3] != 9: |
|
pat = events_matrix1[0][6] |
|
else: |
|
pat = 128 |
|
|
|
melody_chords.extend([19461, drums_present, 19332+pat]) |
|
|
|
|
|
|
|
|
|
|
|
abs_time = 0 |
|
|
|
pbar_time = 0 |
|
|
|
pe = events_matrix1[0] |
|
|
|
chords_counter = 1 |
|
|
|
comp_chords_len = len(list(set([y[1] for y in events_matrix1]))) |
|
|
|
for e in events_matrix1: |
|
|
|
|
|
|
|
|
|
|
|
delta_time = max(0, min(255, e[1]-pe[1])) |
|
|
|
|
|
|
|
dur = max(0, min(255, e[2])) |
|
cha = max(0, min(15, e[3])) |
|
|
|
|
|
if cha == 9: |
|
pat = 128 |
|
|
|
else: |
|
pat = e[6] |
|
|
|
|
|
|
|
ptc = max(1, min(127, e[4])) |
|
|
|
|
|
|
|
|
|
vel = max(8, min(127, e[5])) |
|
velocity = round(vel / 15)-1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
dur_vel = (8 * dur) + velocity |
|
pat_ptc = (129 * pat) + ptc |
|
|
|
melody_chords.extend([delta_time, dur_vel+256, pat_ptc+2304]) |
|
melody_chords2.append([delta_time, dur_vel+256, pat_ptc+2304]) |
|
|
|
pe = e |
|
|
|
return melody_chords, melody_chords2 |
|
|
|
|
|
|
|
def tokens_to_MIDI(tokens, MIDI_name): |
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', tokens[:12]) |
|
print('=' * 70) |
|
|
|
if len(tokens) != 0: |
|
|
|
song = tokens |
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 0 |
|
vel = 90 |
|
pitch = 0 |
|
channel = 0 |
|
|
|
patches = [-1] * 16 |
|
|
|
channels = [0] * 16 |
|
channels[9] = 1 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 256: |
|
|
|
time += ss * 16 |
|
|
|
if 256 <= ss < 2304: |
|
|
|
dur = ((ss-256) // 8) * 16 |
|
vel = (((ss-256) % 8)+1) * 15 |
|
|
|
if 2304 <= ss < 18945: |
|
|
|
patch = (ss-2304) // 129 |
|
|
|
if patch < 128: |
|
|
|
if patch not in patches: |
|
if 0 in channels: |
|
cha = channels.index(0) |
|
channels[cha] = 1 |
|
else: |
|
cha = 15 |
|
|
|
patches[cha] = patch |
|
channel = patches.index(patch) |
|
else: |
|
channel = patches.index(patch) |
|
|
|
if patch == 128: |
|
channel = 9 |
|
|
|
pitch = (ss-2304) % 129 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, patch ]) |
|
|
|
patches = [0 if x==-1 else x for x in patches] |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Intelligent MIDI Comparator', |
|
output_file_name = MIDI_name, |
|
track_name='Project Los Angeles', |
|
list_of_MIDI_patches=patches |
|
) |
|
|
|
new_fn = MIDI_name+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
return new_fn, song_f, audio |
|
|
|
|
|
|
|
@spaces.GPU |
|
def CompareMIDIs(input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('Loading model...') |
|
|
|
SEQ_LEN = 8192 |
|
PAD_IDX = 19463 |
|
DEVICE = 'cuda' |
|
|
|
|
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, depth = 32, heads = 32, attn_flash = True) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX) |
|
|
|
model.to(DEVICE) |
|
print('=' * 70) |
|
|
|
print('Loading model checkpoint...') |
|
|
|
model.load_state_dict( |
|
torch.load('Giant_Music_Transformer_Large_Trained_Model_36074_steps_0.3067_loss_0.927_acc.pth', |
|
map_location=DEVICE)) |
|
print('=' * 70) |
|
|
|
model.eval() |
|
|
|
if DEVICE == 'cpu': |
|
dtype = torch.bfloat16 |
|
else: |
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type=DEVICE, dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
sfn = os.path.basename(input_src_midi.name) |
|
sfn1 = sfn.split('.')[0] |
|
|
|
tfn = os.path.basename(input_trg_midi.name) |
|
tfn1 = tfn.split('.')[0] |
|
|
|
print('-' * 70) |
|
print('Input src MIDI name:', sfn) |
|
print('Input trg MIDI name:', tfn) |
|
print('Req sampling resolution:', input_sampling_resolution) |
|
print('Req sampling overlap:', input_sampling_overlap) |
|
print('-' * 70) |
|
|
|
|
|
|
|
print('Loading MIDIs...') |
|
|
|
src_tokens, src_notes = read_MIDI(input_src_midi.name) |
|
trg_tokens, trg_notes = read_MIDI(input_trg_midi.name) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Number of src tokens:', len(src_tokens)) |
|
print('Number of src notes:', len(src_notes)) |
|
print('Number of trg tokens:', len(trg_tokens)) |
|
print('Number of trg notes:', len(trg_notes)) |
|
|
|
|
|
|
|
print('=' * 70) |
|
print('Comparing...') |
|
print('=' * 70) |
|
print('Giant Music Transformer MIDI Comparator') |
|
print('=' * 70) |
|
|
|
sampling_resolution = max(40, min(1000, input_sampling_resolution)) * 3 |
|
sampling_overlap = max(0, min(500, input_sampling_overlap)) * 3 |
|
|
|
comp_length = (min(len(src_tokens), len(trg_tokens)) // sampling_resolution) * sampling_resolution |
|
|
|
input_src_tokens = src_tokens[:comp_length] |
|
input_trg_tokens = trg_tokens[:comp_length] |
|
|
|
comp_cos_sims = [] |
|
|
|
torch.cuda.empty_cache() |
|
|
|
for i in range(0, comp_length, max(1, sampling_resolution-sampling_overlap)): |
|
|
|
inp = [input_src_tokens[i:i+sampling_resolution]] |
|
|
|
inp = torch.LongTensor(inp).cuda() |
|
|
|
with ctx: |
|
with torch.no_grad(): |
|
out = model(inp) |
|
|
|
cache = out[2] |
|
src_embedings = cache.layer_hiddens[-1] |
|
|
|
inp = [input_trg_tokens[i:i+sampling_resolution]] |
|
|
|
inp = torch.LongTensor(inp).cuda() |
|
|
|
with ctx: |
|
with torch.no_grad(): |
|
out = model(inp) |
|
|
|
cache = out[2] |
|
trg_embedings = cache.layer_hiddens[-1] |
|
|
|
cos_sim = pairwise.cosine_similarity([src_embedings.cpu().detach().numpy()[0].flatten()], |
|
[trg_embedings.cpu().detach().numpy()[0].flatten()] |
|
).tolist()[0][0] |
|
|
|
comp_cos_sims.append(cos_sim) |
|
|
|
output_min_sim = min(comp_cos_sims) |
|
output_avg_sim = sum(comp_cos_sims) / len(comp_cos_sims) |
|
output_max_sim = max(comp_cos_sims) |
|
|
|
print('Min sim:', output_min_sim) |
|
print('Avg sim:', output_avg_sim) |
|
print('max sim:', output_max_sim) |
|
|
|
print('=' * 70) |
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Rendering results...') |
|
|
|
sname, ssong_f, saudio = tokens_to_MIDI(src_tokens[:comp_length], sfn1) |
|
tname, tsong_f, taudio = tokens_to_MIDI(trg_tokens[:comp_length], tfn1) |
|
|
|
|
|
|
|
output_src_audio = (16000, saudio) |
|
output_src_plot = plot_ms_SONG(ssong_f, |
|
plot_title=sfn1, |
|
plot_curve_values=comp_cos_sims, |
|
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, |
|
return_plt=True |
|
) |
|
|
|
output_trg_audio = (16000, taudio) |
|
output_trg_plot = plot_ms_SONG(tsong_f, |
|
plot_title=tfn1, |
|
plot_curve_values=comp_cos_sims, |
|
plot_curve_notes_step=max(1, sampling_resolution-sampling_overlap) // 3, |
|
return_plt=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
with app: |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent MIDI Comparator</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Intelligent comparison of any pair of MIDIs</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Intelligent-MIDI-Comparator&style=flat)\n\n" |
|
"This is a demo for the Giant Music Transformer\n\n" |
|
"Check out [Giant Music Transformer](https://github.com/asigalov61/Giant-Music-Transformer) on GitHub!\n\n" |
|
"[Open In Colab]" |
|
"(https://colab.research.google.com/github/asigalov61/Giant-Music-Transformer/blob/main/Giant_Music_Transformer.ipynb)" |
|
" for all features, faster execution and endless generation" |
|
) |
|
|
|
|
|
gr.Markdown("## Upload your MIDIs or select a sample example below") |
|
|
|
gr.Markdown("## Upload source MIDI") |
|
|
|
input_src_midi = gr.File(label="Source MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
|
|
gr.Markdown("## Upload target MIDI") |
|
|
|
input_trg_midi = gr.File(label="Target MIDI", file_types=[".midi", ".mid", ".kar"]) |
|
|
|
gr.Markdown("### Make sure that the MIDI has at least sampling resolution number of notes") |
|
|
|
input_sampling_resolution = gr.Slider(50, 2000, value=500, step=10, label="Sampling resolution in notes") |
|
|
|
gr.Markdown("### Make sure that the sampling overlap value is less than sampling resolution value") |
|
|
|
input_sampling_overlap = gr.Slider(0, 1000, value=0, step=10, label="Sampling overlap in notes") |
|
|
|
run_btn = gr.Button("compare", variant="primary") |
|
|
|
gr.Markdown("## MIDI comparison results") |
|
|
|
output_min_sim = gr.Number(label="Minimum similarity") |
|
output_avg_sim = gr.Number(label="Average similarity") |
|
output_max_sim = gr.Number(label="Maximum similarity") |
|
|
|
output_src_audio = gr.Audio(label="Source MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_src_plot = gr.Plot(label="Source MIDI plot") |
|
|
|
output_trg_audio = gr.Audio(label="Target MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_trg_plot = gr.Plot(label="Target MIDI plot") |
|
|
|
run_event = run_btn.click(CompareMIDIs, [input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], |
|
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim]) |
|
|
|
gr.Examples( |
|
[ |
|
["Honesty.kar", "Hotel California.mid", 200, 0], |
|
["House Of The Rising Sun.mid", "Nothing Else Matters.kar", 200, 0], |
|
["Deep Relaxation Melody #6.mid", "Deep Relaxation Melody #8.mid", 200, 0], |
|
["I Just Called To Say I Love You.mid", "Sharing The Night Together.kar", 200, 0], |
|
], |
|
[input_src_midi, input_trg_midi, input_sampling_resolution, input_sampling_overlap], |
|
[output_src_audio, output_src_plot, output_trg_audio, output_trg_plot, output_min_sim, output_avg_sim, output_max_sim], |
|
CompareMIDIs, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |