#================================================================ # https://huggingface.co/spaces/asigalov61/MIDI-Identification #================================================================ import os import hashlib import time import datetime from pytz import timezone import copy from collections import Counter import random import statistics import gradio as gr from huggingface_hub import InferenceClient import TMIDIX #========================================================================================================== HF_TOKEN = os.getenv('HF_TOKEN') #========================================================================================================== def format_table_data(data_string): # Split the string into rows based on newlines rows = data_string.strip().split("\n") # Initialize a list to store the formatted data formatted_data = [] for row in rows: # Split each row into columns based on the separator '|' and strip extra spaces columns = row.split("|") formatted_row = [cell.strip() for cell in columns] # Remove cells with only "-" symbols formatted_row = [cell for cell in formatted_row if not all(char == '-' for char in cell)] # Handle uneven rows by ensuring each row has the same number of columns max_columns = max(len(columns) for columns in formatted_data) if formatted_data else len(columns) while len(formatted_row) < max_columns: formatted_row.append("") # Add empty strings to fill the row formatted_data.append(formatted_row) # Handle case where new rows have more columns than previous rows max_columns = max(len(row) for row in formatted_data) for row in formatted_data: while len(row) < max_columns: row.append("") # Add empty strings to fill the row return formatted_data #========================================================================================================== def ID_MIDI(input_midi): print('*' * 70) print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) start_time = time.time() print('=' * 70) print('Loading MIDI...') fn = os.path.basename(input_midi) fn1 = fn.split('.')[0] fdata = open(input_midi, 'rb').read() input_midi_md5hash = hashlib.md5(fdata).hexdigest() print('=' * 70) print('Requested settings:') print('=' * 70) print('Input MIDI file name:', fn) print('Input MIDI md5 hash', input_midi_md5hash) print('=' * 70) print('Processing MIDI...Please wait...') #======================================================= # START PROCESSING new_midi_data = TMIDIX.score2midi(TMIDIX.midi2score(fdata)) new_midi_md5hash = hashlib.md5(new_midi_data).hexdigest() print('New md5 hash:', new_midi_md5hash) print('Done!') print('=' * 70) print('Processing...Please wait...') output_str = 'None' output_midi_records_count = 0 output_midi_src_dataset= 'Unknown' output_midi_path_str = 'None' if new_midi_md5hash in MIDID_database: client = InferenceClient(api_key=HF_TOKEN) prompt = "Please create a summary table for a MIDI file based on the following keywords strings, best possible description and best possible summary fields. Please respond with the table only. Do not say anything else. Thank you." output_midi_records_count = len(MIDID_database[new_midi_md5hash]) output_entry = random.choice(MIDID_database[new_midi_md5hash]) output_midi_src_dataset = output_entry['midi_dataset'] output_midi_path_str = output_entry['midi_path'] data = 'Source MIDI dataset: ' + output_midi_src_dataset + '\n' + output_midi_path_str messages = [ { "role": "user", "content": prompt + "\n\n" + data } ] completion = client.chat.completions.create( #model="Qwen/Qwen2.5-72B-Instruct", model="mistralai/Mistral-Nemo-Instruct-2407", messages=messages, max_tokens=500 ) output_str = completion.choices[0].message['content'] output_table_data = format_table_data(output_str) else: output_table_data = [['No matching MIDI ID records found', 'Unknown MIDI', 'Sorry :(']] print('Done!') print('=' * 70) print('Original MIDI unique records count', output_midi_records_count) print('Original MIDI dataset', output_midi_src_dataset) print('Original MIDI path string', output_midi_path_str) print('=' * 70) print(output_str) print('=') #======================================================== output_midi_md5 = str(input_midi_md5hash) #======================================================== print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('-' * 70) print('Req execution time:', (time.time() - start_time), 'sec') print('*' * 70) #======================================================== return output_midi_md5, output_midi_records_count, output_midi_src_dataset, output_midi_path_str, output_table_data #========================================================================================================== if __name__ == "__main__": PDT = timezone('US/Pacific') print('=' * 70) print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) print('=' * 70) print('Loading MIDID database...') MIDID_database = TMIDIX.Tegridy_Any_Pickle_File_Reader('MIDID_Basic_Database_CC_BY_NC_SA.pickle') print('=' * 70) app = gr.Blocks() with app: gr.Markdown("

MIDI Identification

") gr.Markdown("

Identify any MIDI in a comprehensive database of 1.42M+ MIDI records

") gr.Markdown("This is a demo for tegridy-tools and Monster MIDI dataset\n\n" "Please see [tegridy-tools](https://github.com/asigalov61/tegridy-tools) and [Monster MIDI Dataset](https://github.com/asigalov61/Monster-MIDI-Dataset)GitHub repos for more information\n\n" ) gr.Markdown("## Upload your MIDI") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"], type="filepath") submit = gr.Button("Identify MIDI", variant="primary") gr.Markdown("## MIDI identification results") output_midi_md5 = gr.Textbox(label="Monster MIDI dataset md5 hash") output_midi_records_count = gr.Textbox(label="Original MIDI unique records count") output_midi_src_dataset = gr.Textbox(label="Original MIDI dataset pretty name") output_midi_path_str = gr.Textbox(label="Original MIDI raw path string") output_MIDID_results_table = gr.Dataframe(label="MIDID database results table", wrap=True, col_count=(3, 'dynamic')) run_event = submit.click(ID_MIDI, [input_midi, ], [output_midi_md5, output_midi_records_count, output_midi_src_dataset, output_midi_path_str, output_MIDID_results_table ]) app.queue().launch()