Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -354,14 +354,6 @@ def add_batch(batch_number, final_composition, generated_batches, block_lines):
|
|
354 |
final_composition.extend(generated_batches[batch_number])
|
355 |
midi_fname, midi_score = save_midi(final_composition)
|
356 |
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
|
357 |
-
TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(
|
358 |
-
midi_score,
|
359 |
-
output_signature='Orpheus Music Transformer',
|
360 |
-
output_file_name=midi_fname,
|
361 |
-
track_name='Project Los Angeles',
|
362 |
-
list_of_MIDI_patches=[0]*16,
|
363 |
-
verbose=False
|
364 |
-
)
|
365 |
midi_plot = TMIDIX.plot_ms_SONG(
|
366 |
midi_score,
|
367 |
plot_title='Orpheus Music Transformer Composition',
|
@@ -416,7 +408,7 @@ with gr.Blocks() as demo:
|
|
416 |
|
417 |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>")
|
418 |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>")
|
419 |
-
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>This is a WIP preview. Please check back for final release
|
420 |
gr.HTML("""
|
421 |
Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face
|
422 |
<p>
|
@@ -431,7 +423,7 @@ with gr.Blocks() as demo:
|
|
431 |
gr.Markdown("""
|
432 |
- **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE.
|
433 |
- **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation.
|
434 |
-
- **Premium Training Data**:
|
435 |
- **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord.
|
436 |
- **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression.
|
437 |
- **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately.
|
@@ -443,7 +435,7 @@ with gr.Blocks() as demo:
|
|
443 |
generated_batches = gr.State([])
|
444 |
block_lines = gr.State([])
|
445 |
|
446 |
-
gr.Markdown("## Upload seed MIDI or click 'Generate' for
|
447 |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
448 |
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
|
449 |
[final_composition, generated_batches, block_lines])
|
|
|
354 |
final_composition.extend(generated_batches[batch_number])
|
355 |
midi_fname, midi_score = save_midi(final_composition)
|
356 |
block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
357 |
midi_plot = TMIDIX.plot_ms_SONG(
|
358 |
midi_score,
|
359 |
plot_title='Orpheus Music Transformer Composition',
|
|
|
408 |
|
409 |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>Orpheus Music Transformer</h1>")
|
410 |
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs</h1>")
|
411 |
+
gr.Markdown("<h1 style='text-align: left; margin-bottom: 1rem'>This is a WIP preview. Please check back soon for a final release!</h1>")
|
412 |
gr.HTML("""
|
413 |
Check out <a href="https://huggingface.co/datasets/projectlosangeles/Godzilla-MIDI-Dataset">Godzilla MIDI Dataset</a> on Hugging Face
|
414 |
<p>
|
|
|
423 |
gr.Markdown("""
|
424 |
- **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE.
|
425 |
- **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation.
|
426 |
+
- **Premium Training Data**: Trained solely on the highest-quality MIDIs from the Godzilla MIDI dataset.
|
427 |
- **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord.
|
428 |
- **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression.
|
429 |
- **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately.
|
|
|
435 |
generated_batches = gr.State([])
|
436 |
block_lines = gr.State([])
|
437 |
|
438 |
+
gr.Markdown("## Upload seed MIDI or click 'Generate' for random output")
|
439 |
input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"])
|
440 |
input_midi.upload(reset, [final_composition, generated_batches, block_lines],
|
441 |
[final_composition, generated_batches, block_lines])
|