#==================================================================== # https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer #==================================================================== """ Orpheus Music Transformer Gradio App - Single Model, Simplified Version SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs Using one model which was trained for 3 full epochs" """ import os os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" import time as reqtime import datetime from pytz import timezone import torch import matplotlib.pyplot as plt import gradio as gr import spaces from huggingface_hub import hf_hub_download import TMIDIX from midi_to_colab_audio import midi_to_colab_audio from x_transformer_2_3_1 import TransformerWrapper, AutoregressiveWrapper, Decoder, top_p import random # ----------------------------- # CONFIGURATION & GLOBALS # ----------------------------- SEP = '=' * 70 PDT = timezone('US/Pacific') MODEL_CHECKPOINT = 'Orpheus_Music_Transformer_Trained_Model_96332_steps_0.82_loss_0.748_acc.pth' SOUDFONT_PATH = 'SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2' NUM_OUT_BATCHES = 10 PREVIEW_LENGTH = 120 # in tokens # ----------------------------- # PRINT START-UP INFO # ----------------------------- def print_sep(): print(SEP) print_sep() print("Orpheus Music Transformer Gradio App") print_sep() print("Loading modules...") # ----------------------------- # ENVIRONMENT & PyTorch Settings # ----------------------------- os.environ['USE_FLASH_ATTENTION'] = '1' torch.set_float32_matmul_precision('high') torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.enable_mem_efficient_sdp(True) torch.backends.cuda.enable_math_sdp(True) torch.backends.cuda.enable_flash_sdp(True) torch.backends.cuda.enable_cudnn_sdp(True) print_sep() print("PyTorch version:", torch.__version__) print("Done loading modules!") print_sep() # ----------------------------- # MODEL INITIALIZATION # ----------------------------- print_sep() print("Instantiating model...") device_type = 'cuda' dtype = 'bfloat16' ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype] ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype) SEQ_LEN = 8192 PAD_IDX = 18819 model = TransformerWrapper( num_tokens=PAD_IDX + 1, max_seq_len=SEQ_LEN, attn_layers=Decoder( dim=2048, depth=8, heads=32, rotary_pos_emb=True, attn_flash=True ) ) model = AutoregressiveWrapper(model, ignore_index=PAD_IDX, pad_value=PAD_IDX) print_sep() print("Loading model checkpoint...") checkpoint = hf_hub_download( repo_id='asigalov61/Orpheus-Music-Transformer', filename=MODEL_CHECKPOINT ) model.load_state_dict(torch.load(checkpoint, map_location='cuda', weights_only=True)) model = torch.compile(model, mode='max-autotune') print_sep() print("Done!") print("Model will use", dtype, "precision...") print_sep() model.cuda() model.eval() # ----------------------------- # HELPER FUNCTIONS # ----------------------------- def render_midi_output(final_composition): """Generate MIDI score, plot, and audio from final composition.""" fname, midi_score = save_midi(final_composition) time_val = midi_score[-1][1] / 1000 # seconds marker from last note midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Orpheus Music Transformer Composition', block_lines_times_list=[], return_plt=True ) midi_audio = midi_to_colab_audio( fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True ) return (16000, midi_audio), midi_plot, fname + '.mid', time_val # ----------------------------- # MIDI PROCESSING FUNCTIONS # ----------------------------- def load_midi(input_midi): """Process the input MIDI file and create a token sequence.""" raw_score = TMIDIX.midi2single_track_ms_score(input_midi.name) escore_notes = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True, apply_sustain=True) if escore_notes: escore_notes = TMIDIX.augment_enhanced_score_notes(escore_notes[0], sort_drums_last=True) dscore = TMIDIX.delta_score_notes(escore_notes) dcscore = TMIDIX.chordify_score([d[1:] for d in dscore]) melody_chords = [18816] #======================================================= # MAIN PROCESSING CYCLE #======================================================= for i, c in enumerate(dcscore): delta_time = c[0][0] melody_chords.append(delta_time) for e in c: #======================================================= # Durations dur = max(1, min(255, e[1])) # Patches pat = max(0, min(128, e[5])) # Pitches ptc = max(1, min(127, e[3])) # Velocities # Calculating octo-velocity vel = max(8, min(127, e[4])) velocity = round(vel / 15)-1 #======================================================= # FINAL NOTE SEQ #======================================================= # Writing final note pat_ptc = (128 * pat) + ptc dur_vel = (8 * dur) + velocity melody_chords.extend([pat_ptc+256, dur_vel+16768]) return melody_chords else: return [18816] def save_midi(tokens): """Convert token sequence back to a MIDI score and write it using TMIDIX. """ time = 0 dur = 1 vel = 90 pitch = 60 channel = 0 patch = 0 patches = [-1] * 16 channels = [0] * 16 channels[9] = 1 song_f = [] for ss in tokens: if 0 <= ss < 256: time += ss * 16 if 256 <= ss < 16768: patch = (ss-256) // 128 if patch < 128: if patch not in patches: if 0 in channels: cha = channels.index(0) channels[cha] = 1 else: cha = 15 patches[cha] = patch channel = patches.index(patch) else: channel = patches.index(patch) if patch == 128: channel = 9 pitch = (ss-256) % 128 if 16768 <= ss < 18816: dur = ((ss-16768) // 8) * 16 vel = (((ss-16768) % 8)+1) * 15 song_f.append(['note', time, dur, channel, pitch, vel, patch]) patches = [0 if x==-1 else x for x in patches] output_score, patches, overflow_patches = TMIDIX.patch_enhanced_score_notes(song_f) # Generate a time stamp using the PDT timezone. timestamp = datetime.datetime.now(PDT).strftime("%Y%m%d_%H%M%S") fname = f"Orpheus-Music-Transformer-Composition" TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter( output_score, output_signature='Orpheus Music Transformer', output_file_name=fname, track_name='Project Los Angeles', list_of_MIDI_patches=patches, verbose=False ) return fname, output_score # ----------------------------- # MUSIC GENERATION FUNCTION (Combined) # ----------------------------- @spaces.GPU def generate_music(prime, num_gen_tokens, num_gen_batches, model_temperature, model_top_p): """Generate music tokens given prime tokens and parameters.""" if len(prime) >= 7168: prime = [18816] + prime[-7168:] inputs = prime if prime else [18816] print("Generating...") inp = torch.LongTensor([inputs] * num_gen_batches).cuda() with ctx: out = model.generate( inp, num_gen_tokens, filter_logits_fn=top_p, filter_kwargs={'thres': model_top_p}, temperature=model_temperature, eos_token=18818, return_prime=False, verbose=False ) print("Done!") print_sep() return out.tolist() def generate_music_and_state(input_midi, num_prime_tokens, num_gen_tokens, model_temperature, model_top_p, add_drums, add_outro, final_composition, generated_batches, block_lines): """ Generate tokens using the model, update the composition state, and prepare outputs. This function combines seed loading, token generation, and UI output packaging. """ print_sep() print("Request start time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) start_time = reqtime.time() print_sep() if input_midi is not None: fn = os.path.basename(input_midi.name) fn1 = fn.split('.')[0] print('Input file name:', fn) print('Num prime tokens:', num_prime_tokens) print('Num gen tokens:', num_gen_tokens) print('Model temp:', model_temperature) print('Model top p:', model_top_p) print('Add drums:', add_drums) print('Add outro:', add_outro) print_sep() # Load seed from MIDI if there is no existing composition. if not final_composition and input_midi is not None: final_composition = load_midi(input_midi) if num_prime_tokens < 7168: final_composition = final_composition[:num_prime_tokens] midi_fname, midi_score = save_midi(final_composition) # Use the last note's time as a marker. block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) if final_composition: if add_outro: final_composition.append(18817) # Outro token if add_drums: drum_pitch = random.choice([36, 38]) final_composition.extend([(128*128)+drum_pitch+256]) # Drum token print_sep() print('Composition has', len(final_composition), 'tokens') print_sep() batched_gen_tokens = generate_music(final_composition, num_gen_tokens, NUM_OUT_BATCHES, model_temperature, model_top_p) output_batches = [] for i, tokens in enumerate(batched_gen_tokens): preview_tokens = final_composition[-PREVIEW_LENGTH:] midi_fname, midi_score = save_midi(preview_tokens + tokens) plot_kwargs = {'plot_title': f'Batch # {i}', 'return_plt': True} if len(final_composition) > PREVIEW_LENGTH: plot_kwargs['preview_length_in_notes'] = len([t for t in preview_tokens if 256 <= t < 16768]) midi_plot = TMIDIX.plot_ms_SONG(midi_score, **plot_kwargs) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) output_batches.append([(16000, midi_audio), midi_plot, tokens]) # Update generated_batches (for use by add/remove functions) generated_batches = batched_gen_tokens # Flatten outputs: states then audio and plots for each batch. outputs_flat = [] for batch in output_batches: outputs_flat.extend([batch[0], batch[1]]) print("Request end time:", datetime.datetime.now(PDT).strftime("%Y-%m-%d %H:%M:%S")) print_sep() end_time = reqtime.time() execution_time = end_time - start_time print(f"Request execution time: {execution_time} seconds") print_sep() return [final_composition, generated_batches, block_lines] + outputs_flat # ----------------------------- # BATCH HANDLING FUNCTIONS # ----------------------------- def add_batch(batch_number, final_composition, generated_batches, block_lines): """Add tokens from the specified batch to the final composition and update outputs.""" if generated_batches: final_composition.extend(generated_batches[batch_number]) midi_fname, midi_score = save_midi(final_composition) block_lines.append(midi_score[-1][1] / 1000 if final_composition else 0) midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Orpheus Music Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True ) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) print("Added batch #", batch_number) print_sep() return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines else: return None, None, None, [], [], [] def remove_batch(batch_number, num_tokens, final_composition, generated_batches, block_lines): """Remove tokens from the final composition and update outputs.""" if final_composition and len(final_composition) > num_tokens: final_composition = final_composition[:-num_tokens] if block_lines: block_lines.pop() midi_fname, midi_score = save_midi(final_composition) midi_plot = TMIDIX.plot_ms_SONG( midi_score, plot_title='Orpheus Music Transformer Composition', block_lines_times_list=block_lines[:-1], return_plt=True ) midi_audio = midi_to_colab_audio(midi_fname + '.mid', soundfont_path=SOUDFONT_PATH, sample_rate=16000, output_for_gradio=True) print("Removed batch #", batch_number) print_sep() return (16000, midi_audio), midi_plot, midi_fname + '.mid', final_composition, generated_batches, block_lines else: return None, None, None, [], [], [] def clear(): """Clear outputs and reset state.""" print_sep() print('Clear batch...') print_sep() return None, None, None, [], [] def reset(final_composition=[], generated_batches=[], block_lines=[]): """Reset composition state.""" print_sep() print('Reset MIDI...') print_sep() return [], [], [] # ----------------------------- # GRADIO INTERFACE SETUP # ----------------------------- with gr.Blocks() as demo: gr.Markdown("

Orpheus Music Transformer

") gr.Markdown("

SOTA 8k multi-instrumental music transformer trained on 2.31M+ high-quality MIDIs

") gr.HTML(""" Check out Godzilla MIDI Dataset on Hugging Face

Duplicate in Hugging Face

for faster execution and endless generation! """) gr.HTML("""
Project Los Angeles · Orpheus Music Transformer
""") gr.Markdown("## Key Features") gr.Markdown(""" - **Efficient Architecture with RoPE**: Compact and very fast 479M full attention autoregressive transformer with RoPE. - **Extended Sequence Length**: 8k tokens that comfortably fit most music compositions and facilitate long-term music structure generation. - **Premium Training Data**: Trained solely on the highest-quality MIDIs from the Godzilla MIDI dataset. - **Optimized MIDI Encoding**: Extremely efficient MIDI representation using only 3 tokens per note and 7 tokens per tri-chord. - **Distinct Encoding Order**: Features a unique duration/velocity last MIDI encoding order for refined musical expression. - **Full-Range Instrumental Learning**: True full-range MIDI instruments encoding enabling the model to learn each instrument separately. - **Natural Composition Endings**: Outro tokens that help generate smooth and natural musical conclusions. """) gr.Markdown( """ ## If you enjoyed Orpheus Music Transformer, please star and duplicate. It helps a lot! 🤗 ### [⭐ Star this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer) ### [🔁 Duplicate this Space](https://huggingface.co/spaces/asigalov61/Orpheus-Music-Transformer?duplicate=true) ### [⭐ Star models repo](https://huggingface.co/asigalov61/Orpheus-Music-Transformer) """ ) # Global state variables for composition final_composition = gr.State([]) generated_batches = gr.State([]) block_lines = gr.State([]) gr.Markdown("## Upload seed MIDI or click 'Generate' for random output") gr.Markdown("### PLEASE NOTE:") gr.Markdown("* Orpheus Music Transformer is a primarily music continuation/co-composition model!") gr.Markdown("* The model works best if given some music context to work with") gr.Markdown("* Random generation from SOS token/embeddings may not always produce good results") input_midi = gr.File(label="Input MIDI", file_types=[".midi", ".mid", ".kar"]) input_midi.upload(reset, [final_composition, generated_batches, block_lines], [final_composition, generated_batches, block_lines]) gr.Markdown("## Generate") num_prime_tokens = gr.Slider(16, 7168, value=7168, step=1, label="Number of prime tokens") num_gen_tokens = gr.Slider(16, 1024, value=512, step=1, label="Number of tokens to generate") model_temperature = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature") model_top_p = gr.Slider(0.1, 0.99, value=0.96, step=0.01, label="Model sampling top p value") add_drums = gr.Checkbox(value=False, label="Add drums") add_outro = gr.Checkbox(value=False, label="Add an outro") generate_btn = gr.Button("Generate", variant="primary") gr.Markdown("## Batch Previews") outputs = [final_composition, generated_batches, block_lines] # Two outputs (audio and plot) for each batch for i in range(NUM_OUT_BATCHES): with gr.Tab(f"Batch # {i}"): audio_output = gr.Audio(label=f"Batch # {i} MIDI Audio", format="mp3") plot_output = gr.Plot(label=f"Batch # {i} MIDI Plot") outputs.extend([audio_output, plot_output]) generate_btn.click( generate_music_and_state, [input_midi, num_prime_tokens, num_gen_tokens, model_temperature, model_top_p, add_drums, add_outro, final_composition, generated_batches, block_lines], outputs ) gr.Markdown("## Add/Remove Batch") batch_number = gr.Slider(0, NUM_OUT_BATCHES - 1, value=0, step=1, label="Batch number to add/remove") add_btn = gr.Button("Add batch", variant="primary") remove_btn = gr.Button("Remove batch", variant="stop") clear_btn = gr.ClearButton() final_audio_output = gr.Audio(label="Final MIDI audio", format="mp3") final_plot_output = gr.Plot(label="Final MIDI plot") final_file_output = gr.File(label="Final MIDI file") add_btn.click( add_batch, [batch_number, final_composition, generated_batches, block_lines], [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] ) remove_btn.click( remove_batch, [batch_number, num_gen_tokens, final_composition, generated_batches, block_lines], [final_audio_output, final_plot_output, final_file_output, final_composition, generated_batches, block_lines] ) clear_btn.click(clear, inputs=None, outputs=[final_audio_output, final_plot_output, final_file_output, final_composition, block_lines]) demo.launch()