|
|
|
|
|
|
|
|
|
import time as reqtime |
|
import datetime |
|
from pytz import timezone |
|
|
|
import re |
|
import tqdm |
|
|
|
import gradio as gr |
|
|
|
from x_transformer_1_23_2 import * |
|
import random |
|
|
|
from midi_to_colab_audio import midi_to_colab_audio |
|
import TMIDIX |
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
def parsons_code_to_tokens(parsons_code_str): |
|
|
|
tokens = [388] |
|
|
|
for chr in parsons_code_str[1:]: |
|
|
|
if chr == 'D': |
|
tokens.extend([385]) |
|
|
|
elif chr == 'R': |
|
tokens.extend([386]) |
|
|
|
elif chr == 'U': |
|
tokens.extend([387]) |
|
|
|
return tokens |
|
|
|
|
|
|
|
def Generate_Melody(input_parsons_code, |
|
input_first_note_duration, |
|
iinput_first_note_MIDI_pitch |
|
): |
|
|
|
print('=' * 70) |
|
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
start_time = reqtime.time() |
|
|
|
print('=' * 70) |
|
print('Requested settings:') |
|
print('-' * 70) |
|
print('Parsons code:', input_parsons_code) |
|
print('First note duration:', input_first_note_duration) |
|
print('First note MIDI pitch:', iinput_first_note_MIDI_pitch) |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Instantiating Parsons Code Melody Transformer model...') |
|
|
|
SEQ_LEN = 322 |
|
PAD_IDX = 392 |
|
|
|
model = TransformerWrapper( |
|
num_tokens = PAD_IDX+1, |
|
max_seq_len = SEQ_LEN, |
|
attn_layers = Decoder(dim = 1024, |
|
depth = 4, |
|
heads = 8, |
|
rotary_pos_emb = True, |
|
attn_flash = True |
|
) |
|
) |
|
|
|
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX) |
|
|
|
print('=' * 70) |
|
print('Loading model checkpoint...') |
|
|
|
model_path = 'Parsons_Code_Melody_Transformer_Trained_Model_13786_steps_0.3058_loss_0.8819_acc.pth' |
|
|
|
model.load_state_dict(torch.load(model_path, map_location='cpu')) |
|
|
|
model.cpu() |
|
model.eval() |
|
|
|
dtype = torch.bfloat16 |
|
|
|
ctx = torch.amp.autocast(device_type='cpu', dtype=dtype) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Prepping Parsons code string...') |
|
|
|
td_str = re.sub('[^*DRU]', '', input_parsons_code) |
|
|
|
print(len(td_str)) |
|
print('=' * 70) |
|
|
|
if '*' in td_str and len(td_str) > 1: |
|
code_mult = (64 // len(td_str[1:]))+1 |
|
mult_code = ('*' + (td_str[1:] * code_mult))[:64] |
|
|
|
else: |
|
mult_code = '*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU' |
|
|
|
pcode = parsons_code_to_tokens(mult_code) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
print('Generating melody...') |
|
|
|
song = [] |
|
|
|
song.append(389) |
|
song.extend(pcode) |
|
song.append(390) |
|
|
|
song.extend([388, 0, 10+128, 66+256]) |
|
|
|
for i in tqdm.tqdm(range(1, len(td_str[:64]))): |
|
|
|
song.append(pcode[i]) |
|
|
|
x = torch.tensor(song, dtype=torch.long, device='cpu') |
|
|
|
with ctx: |
|
out = model.generate(x, |
|
3, |
|
filter_logits_fn=top_k, |
|
filter_kwargs={'k': 1}, |
|
temperature=1.0, |
|
return_prime=False, |
|
verbose=False) |
|
|
|
y = out.tolist()[0] |
|
|
|
song.extend(y) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
print('Rendering results...') |
|
|
|
print('=' * 70) |
|
print('Sample INTs', song[:5]) |
|
print('=' * 70) |
|
|
|
song_f = [] |
|
|
|
time = 0 |
|
dur = 4 |
|
vel = 90 |
|
pitch = 60 |
|
channel = 0 |
|
|
|
for ss in song: |
|
|
|
if 0 <= ss < 128: |
|
|
|
time += ss * 32 |
|
|
|
if 128 <= ss < 256: |
|
|
|
dur = (ss-128) * 32 |
|
|
|
if 256 <= ss < 384: |
|
|
|
pitch = ss-256 |
|
|
|
song_f.append(['note', time, dur, channel, pitch, vel, 0]) |
|
|
|
fn1 = 'Parsons-Code-Melody-Transformer-Composition' |
|
|
|
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f, |
|
output_signature = 'Parsons Code Melody Transformer', |
|
output_file_name = fn1, |
|
track_name='Project Los Angeles' |
|
) |
|
|
|
new_fn = fn1+'.mid' |
|
|
|
|
|
audio = midi_to_colab_audio(new_fn, |
|
soundfont_path=soundfont, |
|
sample_rate=16000, |
|
volume_scale=10, |
|
output_for_gradio=True |
|
) |
|
|
|
print('Done!') |
|
print('=' * 70) |
|
|
|
|
|
|
|
output_midi_title = str(fn1) |
|
output_midi = str(new_fn) |
|
output_audio = (16000, audio) |
|
|
|
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True) |
|
|
|
print('Output MIDI file name:', output_midi) |
|
print('Output MIDI title:', output_midi_title) |
|
print('=' * 70) |
|
|
|
|
|
|
|
|
|
print('-' * 70) |
|
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('-' * 70) |
|
print('Req execution time:', (reqtime.time() - start_time), 'sec') |
|
|
|
return output_midi_title, output_midi, output_audio, output_plot |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
PDT = timezone('US/Pacific') |
|
|
|
print('=' * 70) |
|
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT))) |
|
print('=' * 70) |
|
|
|
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2" |
|
|
|
app = gr.Blocks() |
|
|
|
with app: |
|
|
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Parsons Code Melody Transformer</h1>") |
|
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique melodies from Parsons codes</h1>") |
|
gr.Markdown( |
|
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Parsons-Code-Melody-Transformer&style=flat)\n\n" |
|
"This is a demo for Clean Melodies subset of Tegridy MIDI Dataset\n\n" |
|
"Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n" |
|
) |
|
|
|
gr.Markdown("## Enter Parsons code:") |
|
|
|
input_parsons_code = gr.Textbox(label="Parsons code", |
|
info="Make sure your Parsons code starts with *", |
|
lines=1, |
|
value="*" |
|
) |
|
|
|
clr_btn = gr.ClearButton(components=input_parsons_code) |
|
|
|
def reset_pcode(): |
|
return '*' |
|
|
|
clr_btn.click(reset_pcode, outputs=input_parsons_code) |
|
|
|
gr.Markdown("## Select generation options:") |
|
|
|
input_first_note_duration = gr.Slider(1, 127, value=15, step=1, label="First note duration value") |
|
iinput_first_note_MIDI_pitch = gr.Slider(1, 127, value=60, step=1, label="First note MIDI pitch") |
|
|
|
run_btn = gr.Button("Generate melody", variant="primary") |
|
|
|
gr.Markdown("## Output results") |
|
|
|
output_midi_title = gr.Textbox(label="Output MIDI title") |
|
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio") |
|
output_plot = gr.Plot(label="Output MIDI score plot") |
|
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"]) |
|
|
|
run_event = run_btn.click(Generate_Melody, [input_parsons_code, |
|
input_first_note_duration, |
|
iinput_first_note_MIDI_pitch |
|
], |
|
[output_midi_title, output_midi, output_audio, output_plot]) |
|
|
|
gr.Examples( |
|
[["*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU", 15, 60], |
|
["*UDDDUDDDUDRURUDUUDRDDUDDRUDUDURUDRUDUDDDUDDDRDUURUDUUDDDUDRRUUD", 15, 60], |
|
["*DUDDDUUDDUUDDUDUDDDUUUUUDDDDUDDDUUDDUUDDUUDUDDUDDDUUDDUUDDUDUDD", 15, 60], |
|
["*DUUDDRDDUURUDUDDDUDDDDDURDDUDRDURUURUURDDDUURDUURUDUUDURDUDUDRD", 15, 60], |
|
["*UUUDDUUUDDDDDUDDUUDDDDUUDDUDDDDDUUUDDDDDUDDUUUDDDURDUDUUUDDUUUD", 15, 60], |
|
["*UDUUDRUDDUDRURUURUUUUUDUDDUDDUDDUDRUDDUDRUDDDUDUUDRUDDUDRURUURU", 15, 60], |
|
], |
|
[input_parsons_code, |
|
input_first_note_duration, |
|
iinput_first_note_MIDI_pitch |
|
], |
|
[output_midi_title, output_midi, output_audio, output_plot], |
|
Generate_Melody, |
|
cache_examples=True, |
|
) |
|
|
|
app.queue().launch() |