File size: 9,657 Bytes
67d849b
 
 
cdb1fca
 
 
 
97e80ab
9cd9af8
f9a9fdd
97e80ab
cdb1fca
 
67d849b
cdb1fca
 
 
 
 
 
2f9b3e2
9cd9af8
fec90c5
9cd9af8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8979d67
28617b1
 
980518f
67d849b
2f9b3e2
cdb1fca
 
 
 
9cd9af8
e4d1c33
cdb1fca
28617b1
 
 
9cd9af8
cdb1fca
 
9cd9af8
 
 
 
 
cdb1fca
9cd9af8
 
 
 
 
 
 
 
 
 
cdb1fca
9cd9af8
cdb1fca
9cd9af8
 
cdb1fca
9cd9af8
 
 
c2b2970
9cd9af8
 
d356604
9cd9af8
 
 
9386e92
9cd9af8
 
fec90c5
9cd9af8
2f9b3e2
9cd9af8
2f9b3e2
307e572
c2b2970
9cd9af8
 
 
 
 
 
d356604
9cd9af8
 
ac062f7
9800628
 
9cd9af8
 
e4d1c33
9cd9af8
e4d1c33
9800628
 
 
 
 
 
 
 
 
 
 
 
 
9cd9af8
9800628
9cd9af8
9800628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd9af8
 
 
 
9800628
9cd9af8
 
9800628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9cd9af8
9800628
9cd9af8
 
 
e4d1c33
cdb1fca
9cd9af8
 
 
 
 
 
cdb1fca
9cd9af8
 
 
 
 
 
 
 
cdb1fca
60bb1af
9cd9af8
 
 
 
cdb1fca
9cd9af8
 
cdb1fca
9cd9af8
 
 
 
 
9800628
cdb1fca
 
 
 
 
 
 
 
 
 
 
 
67d849b
cdb1fca
67d849b
cdb1fca
67d849b
 
 
cdb1fca
67d849b
3524423
 
cdb1fca
67d849b
1dd49e0
cdb1fca
27e9304
 
e876f9c
980518f
14b333b
79018d5
136e3ab
 
79018d5
 
 
 
 
1dd49e0
e876f9c
 
 
e4d1c33
e876f9c
136e3ab
cdb1fca
 
 
d34b744
cdb1fca
 
 
e876f9c
 
980518f
67d849b
9800628
cdb1fca
 
e876f9c
1dd49e0
 
 
 
 
d34b744
e876f9c
 
980518f
cdb1fca
9800628
67d849b
cdb1fca
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
#=========================================================================
# https://huggingface.co/spaces/asigalov61/Parsons-Code-Melody-Transformer
#=========================================================================

import time as reqtime
import datetime
from pytz import timezone

import re
import tqdm

import gradio as gr

from x_transformer_1_23_2 import *
import random

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt
    
#=====================================================================================

def parsons_code_to_tokens(parsons_code_str):

  tokens = [388]

  for chr in parsons_code_str[1:]:

    if chr == 'D':
      tokens.extend([385])

    elif chr == 'R':
      tokens.extend([386])

    elif chr == 'U':
      tokens.extend([387])

  return tokens

#====================================================================================

def Generate_Melody(input_parsons_code, 
                   input_first_note_duration, 
                   iinput_first_note_MIDI_pitch
                 ):
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('=' * 70)
    print('Requested settings:')
    print('-' * 70)
    print('Parsons code:', input_parsons_code)
    print('First note duration:', input_first_note_duration)
    print('First note MIDI pitch:', iinput_first_note_MIDI_pitch)
    print('=' * 70)

    #===============================================================================

    print('Instantiating Parsons Code Melody Transformer model...')

    SEQ_LEN = 322
    PAD_IDX = 392
    
    model = TransformerWrapper(
        num_tokens = PAD_IDX+1,
        max_seq_len = SEQ_LEN,
        attn_layers = Decoder(dim = 1024,
                              depth = 4,
                              heads = 8,
                              rotary_pos_emb = True,
                              attn_flash = True
                             )
        )
    
    model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
    
    print('=' * 70)
    print('Loading model checkpoint...')
    
    model_path = 'Parsons_Code_Melody_Transformer_Trained_Model_13786_steps_0.3058_loss_0.8819_acc.pth'
    
    model.load_state_dict(torch.load(model_path, map_location='cpu'))

    model.cpu()
    model.eval()

    dtype = torch.bfloat16
    
    ctx = torch.amp.autocast(device_type='cpu', dtype=dtype)

    print('Done!')
    print('=' * 70)

    #===============================================================================

    print('Prepping Parsons code string...')

    td_str = re.sub('[^*DRU]', '', input_parsons_code)
    
    print(len(td_str))
    print('=' * 70)
    
    if '*' in td_str and len(td_str) > 1:
      code_mult = (64 // len(td_str[1:]))+1
      mult_code = ('*' + (td_str[1:] * code_mult))[:64]
    
    else:
      mult_code = '*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU'

    pcode = parsons_code_to_tokens(mult_code)

    print('Done!')
    print('=' * 70)

    #===============================================================================

    print('Generating melody...')

    song = []

    song.append(389)
    song.extend(pcode)
    song.append(390)
    
    song.extend([388, 0, 10+128, 66+256])
    
    for i in tqdm.tqdm(range(1, len(td_str[:64]))):
    
        song.append(pcode[i])
    
        x = torch.tensor(song, dtype=torch.long, device='cpu')
    
        with ctx:
            out = model.generate(x,
                                 3,
                                 filter_logits_fn=top_k,
                                 filter_kwargs={'k': 1},
                                 temperature=1.0,
                                 return_prime=False,
                                 verbose=False)
    
        y = out.tolist()[0]
    
        song.extend(y)

    print('Done!')
    print('=' * 70)
        
    #===============================================================================
    print('Rendering results...')
    
    print('=' * 70)
    print('Sample INTs', song[:5])
    print('=' * 70)

    song_f = []

    time = 0
    dur = 4
    vel = 90
    pitch = 60
    channel = 0

    for ss in song:

        if 0 <= ss < 128:

            time += ss * 32

        if 128 <= ss < 256:

            dur = (ss-128) * 32

        if 256 <= ss < 384:

            pitch = ss-256

            song_f.append(['note', time, dur, channel, pitch, vel, 0])

    fn1 = 'Parsons-Code-Melody-Transformer-Composition'

    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Parsons Code Melody Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles'
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"

    app = gr.Blocks()
    
    with app:
        
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Parsons Code Melody Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique melodies from Parsons codes</h1>")
        gr.Markdown(
            "![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Parsons-Code-Melody-Transformer&style=flat)\n\n"
            "This is a demo for Clean Melodies subset of Tegridy MIDI Dataset\n\n"
            "Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n"
        )
        
        gr.Markdown("## Enter Parsons code:")
        
        input_parsons_code = gr.Textbox(label="Parsons code",
                                        info="Make sure your Parsons code starts with *",
                                        lines=1,
                                        value="*"
                                        )
        
        clr_btn = gr.ClearButton(components=input_parsons_code)

        def reset_pcode():
            return '*'

        clr_btn.click(reset_pcode, outputs=input_parsons_code)

        gr.Markdown("## Select generation options:")
                
        input_first_note_duration = gr.Slider(1, 127, value=15, step=1, label="First note duration value")
        iinput_first_note_MIDI_pitch = gr.Slider(1, 127, value=60, step=1, label="First note MIDI pitch")
         
        run_btn = gr.Button("Generate melody", variant="primary")
        
        gr.Markdown("## Output results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Generate_Melody, [input_parsons_code, 
                                                   input_first_note_duration, 
                                                   iinput_first_note_MIDI_pitch
                                                  ],
                                                [output_midi_title, output_midi, output_audio, output_plot])

        gr.Examples(
            [["*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU", 15, 60],
             ["*UDDDUDDDUDRURUDUUDRDDUDDRUDUDURUDRUDUDDDUDDDRDUURUDUUDDDUDRRUUD", 15, 60],
             ["*DUDDDUUDDUUDDUDUDDDUUUUUDDDDUDDDUUDDUUDDUUDUDDUDDDUUDDUUDDUDUDD", 15, 60],
             ["*DUUDDRDDUURUDUDDDUDDDDDURDDUDRDURUURUURDDDUURDUURUDUUDURDUDUDRD", 15, 60],
             ["*UUUDDUUUDDDDDUDDUUDDDDUUDDUDDDDDUUUDDDDDUDDUUUDDDURDUDUUUDDUUUD", 15, 60],
             ["*UDUUDRUDDUDRURUURUUUUUDUDDUDDUDDUDRUDDUDRUDDDUDUUDRUDDUDRURUURU", 15, 60],
            ],
            [input_parsons_code, 
            input_first_note_duration, 
            iinput_first_note_MIDI_pitch
            ],
            [output_midi_title, output_midi, output_audio, output_plot],
            Generate_Melody,
            cache_examples=True,
        )
        
        app.queue().launch()