Spaces:
Sleeping
Sleeping
File size: 9,657 Bytes
67d849b cdb1fca 97e80ab 9cd9af8 f9a9fdd 97e80ab cdb1fca 67d849b cdb1fca 2f9b3e2 9cd9af8 fec90c5 9cd9af8 8979d67 28617b1 980518f 67d849b 2f9b3e2 cdb1fca 9cd9af8 e4d1c33 cdb1fca 28617b1 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 c2b2970 9cd9af8 d356604 9cd9af8 9386e92 9cd9af8 fec90c5 9cd9af8 2f9b3e2 9cd9af8 2f9b3e2 307e572 c2b2970 9cd9af8 d356604 9cd9af8 ac062f7 9800628 9cd9af8 e4d1c33 9cd9af8 e4d1c33 9800628 9cd9af8 9800628 9cd9af8 9800628 9cd9af8 9800628 9cd9af8 9800628 9cd9af8 9800628 9cd9af8 e4d1c33 cdb1fca 9cd9af8 cdb1fca 9cd9af8 cdb1fca 60bb1af 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 9800628 cdb1fca 67d849b cdb1fca 67d849b cdb1fca 67d849b cdb1fca 67d849b 3524423 cdb1fca 67d849b 1dd49e0 cdb1fca 27e9304 e876f9c 980518f 14b333b 79018d5 136e3ab 79018d5 1dd49e0 e876f9c e4d1c33 e876f9c 136e3ab cdb1fca d34b744 cdb1fca e876f9c 980518f 67d849b 9800628 cdb1fca e876f9c 1dd49e0 d34b744 e876f9c 980518f cdb1fca 9800628 67d849b cdb1fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
#=========================================================================
# https://huggingface.co/spaces/asigalov61/Parsons-Code-Melody-Transformer
#=========================================================================
import time as reqtime
import datetime
from pytz import timezone
import re
import tqdm
import gradio as gr
from x_transformer_1_23_2 import *
import random
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
#=====================================================================================
def parsons_code_to_tokens(parsons_code_str):
tokens = [388]
for chr in parsons_code_str[1:]:
if chr == 'D':
tokens.extend([385])
elif chr == 'R':
tokens.extend([386])
elif chr == 'U':
tokens.extend([387])
return tokens
#====================================================================================
def Generate_Melody(input_parsons_code,
input_first_note_duration,
iinput_first_note_MIDI_pitch
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('-' * 70)
print('Parsons code:', input_parsons_code)
print('First note duration:', input_first_note_duration)
print('First note MIDI pitch:', iinput_first_note_MIDI_pitch)
print('=' * 70)
#===============================================================================
print('Instantiating Parsons Code Melody Transformer model...')
SEQ_LEN = 322
PAD_IDX = 392
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 4,
heads = 8,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_path = 'Parsons_Code_Melody_Transformer_Trained_Model_13786_steps_0.3058_loss_0.8819_acc.pth'
model.load_state_dict(torch.load(model_path, map_location='cpu'))
model.cpu()
model.eval()
dtype = torch.bfloat16
ctx = torch.amp.autocast(device_type='cpu', dtype=dtype)
print('Done!')
print('=' * 70)
#===============================================================================
print('Prepping Parsons code string...')
td_str = re.sub('[^*DRU]', '', input_parsons_code)
print(len(td_str))
print('=' * 70)
if '*' in td_str and len(td_str) > 1:
code_mult = (64 // len(td_str[1:]))+1
mult_code = ('*' + (td_str[1:] * code_mult))[:64]
else:
mult_code = '*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU'
pcode = parsons_code_to_tokens(mult_code)
print('Done!')
print('=' * 70)
#===============================================================================
print('Generating melody...')
song = []
song.append(389)
song.extend(pcode)
song.append(390)
song.extend([388, 0, 10+128, 66+256])
for i in tqdm.tqdm(range(1, len(td_str[:64]))):
song.append(pcode[i])
x = torch.tensor(song, dtype=torch.long, device='cpu')
with ctx:
out = model.generate(x,
3,
filter_logits_fn=top_k,
filter_kwargs={'k': 1},
temperature=1.0,
return_prime=False,
verbose=False)
y = out.tolist()[0]
song.extend(y)
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
print('Sample INTs', song[:5])
print('=' * 70)
song_f = []
time = 0
dur = 4
vel = 90
pitch = 60
channel = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128) * 32
if 256 <= ss < 384:
pitch = ss-256
song_f.append(['note', time, dur, channel, pitch, vel, 0])
fn1 = 'Parsons-Code-Melody-Transformer-Composition'
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Parsons Code Melody Transformer',
output_file_name = fn1,
track_name='Project Los Angeles'
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Parsons Code Melody Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique melodies from Parsons codes</h1>")
gr.Markdown(
"![Visitors](https://api.visitorbadge.io/api/visitors?path=asigalov61.Parsons-Code-Melody-Transformer&style=flat)\n\n"
"This is a demo for Clean Melodies subset of Tegridy MIDI Dataset\n\n"
"Check out [Tegridy MIDI Dataset](https://github.com/asigalov61/Tegridy-MIDI-Dataset) on GitHub!\n\n"
)
gr.Markdown("## Enter Parsons code:")
input_parsons_code = gr.Textbox(label="Parsons code",
info="Make sure your Parsons code starts with *",
lines=1,
value="*"
)
clr_btn = gr.ClearButton(components=input_parsons_code)
def reset_pcode():
return '*'
clr_btn.click(reset_pcode, outputs=input_parsons_code)
gr.Markdown("## Select generation options:")
input_first_note_duration = gr.Slider(1, 127, value=15, step=1, label="First note duration value")
iinput_first_note_MIDI_pitch = gr.Slider(1, 127, value=60, step=1, label="First note MIDI pitch")
run_btn = gr.Button("Generate melody", variant="primary")
gr.Markdown("## Output results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Generate_Melody, [input_parsons_code,
input_first_note_duration,
iinput_first_note_MIDI_pitch
],
[output_midi_title, output_midi, output_audio, output_plot])
gr.Examples(
[["*UUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUUDDDDDDDUUUUUUU", 15, 60],
["*UDDDUDDDUDRURUDUUDRDDUDDRUDUDURUDRUDUDDDUDDDRDUURUDUUDDDUDRRUUD", 15, 60],
["*DUDDDUUDDUUDDUDUDDDUUUUUDDDDUDDDUUDDUUDDUUDUDDUDDDUUDDUUDDUDUDD", 15, 60],
["*DUUDDRDDUURUDUDDDUDDDDDURDDUDRDURUURUURDDDUURDUURUDUUDURDUDUDRD", 15, 60],
["*UUUDDUUUDDDDDUDDUUDDDDUUDDUDDDDDUUUDDDDDUDDUUUDDDURDUDUUUDDUUUD", 15, 60],
["*UDUUDRUDDUDRURUURUUUUUDUDDUDDUDDUDRUDDUDRUDDDUDUUDRUDDUDRURUURU", 15, 60],
],
[input_parsons_code,
input_first_note_duration,
iinput_first_note_MIDI_pitch
],
[output_midi_title, output_midi, output_audio, output_plot],
Generate_Melody,
cache_examples=True,
)
app.queue().launch() |