Spaces:
Sleeping
Sleeping
File size: 12,131 Bytes
07c6c95 cdb1fca 97e80ab 07c6c95 9cd9af8 f9a9fdd 97e80ab cdb1fca 5681620 cdb1fca 67d849b cdb1fca 2f9b3e2 9cd9af8 fec90c5 07c6c95 9cd9af8 07c6c95 61d2e2e 9cd9af8 07c6c95 61daf8d 07c6c95 30ed745 07c6c95 30ed745 8c321c5 07c6c95 30ed745 07c6c95 5681620 9cd9af8 07c6c95 9cd9af8 8979d67 5681620 d7dbf57 15d8aad 07c6c95 2f9b3e2 cdb1fca 9cd9af8 e4d1c33 cdb1fca d7dbf57 15d8aad 9cd9af8 cdb1fca 9cd9af8 d7dbf57 9cd9af8 730c3b0 2d2f60f 730c3b0 f4d6d33 730c3b0 5681620 3eaf1f8 9800628 5681620 8c321c5 730c3b0 15d8aad 730c3b0 15d8aad 8c321c5 730c3b0 9800628 9cd9af8 730c3b0 9cd9af8 fa31cf9 15d8aad fa31cf9 9800628 9cd9af8 9800628 30ed745 9800628 30ed745 9800628 30ed745 9800628 30ed745 5fec312 30ed745 5fec312 30ed745 9800628 30ed745 9800628 30ed745 9cd9af8 9800628 9cd9af8 e4d1c33 cdb1fca 9cd9af8 cdb1fca 9cd9af8 cdb1fca 60bb1af 9cd9af8 15d8aad 9cd9af8 cdb1fca 9cd9af8 cdb1fca 9cd9af8 fa31cf9 cdb1fca 67d849b cdb1fca 67d849b cdb1fca 67d849b 30ed745 cdb1fca 30ed745 cdb1fca 67d849b 8c321c5 d7dbf57 79018d5 1dd49e0 8c321c5 d7dbf57 15d8aad 8c321c5 136e3ab cdb1fca 8c321c5 d34b744 cdb1fca 8c321c5 15d8aad 8c321c5 15d8aad 8c321c5 15d8aad 8c321c5 5fec312 8c321c5 cdb1fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 |
#==================================================================
# https://huggingface.co/spaces/asigalov61/Popular-Hook-Transformer
#==================================================================
import time as reqtime
import datetime
from pytz import timezone
import statistics
import re
import tqdm
import gradio as gr
import spaces
from x_transformer_1_23_2 import *
import random
from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX
import matplotlib.pyplot as plt
#=====================================================================================
print('=' * 70)
print('Popular Hook Transformer')
print('=' * 70)
print('Loading Popular Hook Transformer training data...')
print('=' * 70)
melody_chords_f = TMIDIX.Tegridy_Any_Pickle_File_Reader('Popular_Hook_Transformer_Training_Data.pickle')
print('=' * 70)
#====================================================================================
SEQ_LEN = 512
PAD_IDX = 918
DEVICE = 'cpu'
#====================================================================================
def str_strip(string):
return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-')
def mode_time(seq):
return statistics.mode([t for t in seq if 0 < t < 128])
def mode_dur(seq):
return statistics.mode([t-128 for t in seq if 128 < t < 256])
def mode_pitch(seq):
return statistics.mode([t % 128 for t in seq if 256 < t < 512])
sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f]))
train_data = []
for m in tqdm.tqdm(melody_chords_f):
if 64 < len(m[5]) < 506:
for tv in range(-3, 3):
section = str_strip(m[2])
section_tok = sections_dict.index(section)
score = [t+tv if 256 < t < 512 else t for t in m[5]]
seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788]
seq += score
seq += [917]
seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq))
train_data.append(seq)
#====================================================================================
print('Done!')
print('=' * 70)
print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len)))
print('=' * 70)
print('Randomizing training data...')
random.shuffle(train_data)
print('Done!')
print('=' * 70)
print('Total length of training data:', len(train_data))
print('=' * 70)
#====================================================================================
print('Loading Popular Hook Transformer pre-trained model...')
print('=' * 70)
print('Instantiating model...')
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = 1024,
depth = 4,
heads = 32,
rotary_pos_emb = True,
attn_flash = True
)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
print('=' * 70)
print('Loading model checkpoint...')
model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth'
model.load_state_dict(torch.load(model_path, map_location='cpu'))
print('Done!')
print('=' * 70)
#====================================================================================
@spaces.GPU
def Generate_POP_Section(input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
):
print('=' * 70)
print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
start_time = reqtime.time()
print('=' * 70)
print('Requested settings:')
print('-' * 70)
print('Composition section:', input_comp_section)
print('Mode time:', input_mode_time)
print('Mode duration:', input_mode_dur)
print('Mode pitch:', input_mode_ptc)
print('Model temperature:', input_model_temp)
print('Model top p:', input_model_top_p)
print('=' * 70)
#===============================================================================
print('Generating...')
if input_comp_section == 'random':
seq = [916]
else:
seq = [916, sections_dict.index(input_comp_section)+512]
input_seq = [input_mode_time, input_mode_dur, input_mode_ptc]
input_seq_toks = [input_mode_time+532, input_mode_dur+660, input_mode_ptc+788]
if 0 in input_seq:
input_seq = input_seq_toks[:input_seq.index(0)]
else:
input_seq = input_seq_toks
seq += input_seq
model.to(DEVICE)
model.eval()
x = torch.LongTensor(seq).to(DEVICE)
with torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16):
out = model.generate(x,
512-len(seq),
temperature=input_model_temp,
filter_logits_fn=top_p,
filter_kwargs={'thres': input_model_top_p},
eos_token=917,
return_prime=True,
verbose=True)
song = out.tolist()[0]
print('Done!')
print('=' * 70)
#===============================================================================
print('Rendering results...')
print('=' * 70)
comp_section = sections_dict[song[1]-512]
comp_mode_time = song[2]-532
comp_mode_dur = song[3]-660
comp_mode_ptc = song[4]-788
comp_summary = ''
comp_summary += 'Generated section: ' + str(comp_section) + '\n'
comp_summary += 'Generated mode time: ' + str(comp_mode_time) + '\n'
comp_summary += 'Generated mode duration: ' + str(comp_mode_dur) + '\n'
comp_summary += 'Generated mode pitch: ' + str(comp_mode_ptc)
print('Sample INTs', song[:5])
print('=' * 70)
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
for ss in song:
if 0 <= ss < 128:
time += ss * 32
if 128 <= ss < 256:
dur = (ss-128)* 32
if 256 <= ss < 512:
pitch = (ss-256) % 128
cha = (ss-256) // 128
if cha == 0:
channel = 3
vel = 110+(pitch % 12)
patch = 40
else:
channel = 0
vel = max(40, pitch)
patch = 0
song_f.append(['note', time, dur, channel, pitch, vel, patch ])
fn1 = 'Popular-Hook-Transformer-Composition'
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Popular Hook Transformer',
output_file_name = fn1,
track_name='Project Los Angeles'
)
new_fn = fn1+'.mid'
audio = midi_to_colab_audio(new_fn,
soundfont_path=soundfont,
sample_rate=16000,
volume_scale=10,
output_for_gradio=True
)
print('Done!')
print('=' * 70)
#========================================================
output_midi_title = str(fn1)
output_midi = str(new_fn)
output_audio = (16000, audio)
output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True)
print('Output MIDI file name:', output_midi)
print('Output MIDI title:', output_midi_title)
print('Output MIDI summary:', comp_summary)
print('=' * 70)
#========================================================
print('-' * 70)
print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('-' * 70)
print('Req execution time:', (reqtime.time() - start_time), 'sec')
return output_midi_title, comp_summary, output_midi, output_audio, output_plot
# =================================================================================================
if __name__ == "__main__":
PDT = timezone('US/Pacific')
print('=' * 70)
print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
print('=' * 70)
soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"
app = gr.Blocks()
with app:
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Popular Hook Transformer</h1>")
gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music sections</h1>")
gr.Markdown(
"This is a demo for popular-hook MIDI Dataset\n\n"
"Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n"
)
gr.Markdown("## Select POP composition section to generate:")
input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='random')
gr.Markdown("## Select generation options:")
input_mode_time = gr.Slider(0, 127, value=0, step=1, label="Composition mode time")
input_mode_dur = gr.Slider(0, 127, value=0, step=1, label="Composition mode dur")
input_mode_ptc = gr.Slider(0, 127, value=0, step=1, label="Composition mode pitch")
input_model_temp = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
run_btn = gr.Button("Generate", variant="primary")
gr.Markdown("## Output results")
output_midi_title = gr.Textbox(label="Output MIDI title")
output_midi_summary = gr.Textbox(label="Output MIDI summary")
output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
output_plot = gr.Plot(label="Output MIDI score plot")
output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])
run_event = run_btn.click(Generate_POP_Section, [input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
],
[output_midi_title,
output_midi_summary,
output_midi,
output_audio,
output_plot]
)
gr.Examples([["intro", 10, 15, 72, 0.9, 0.96],
["chorus", 10, 15, 72, 0.9, 0.96],
["bridge", 10, 15, 72, 0.9, 0.96]
],
[input_comp_section,
input_mode_time,
input_mode_dur,
input_mode_ptc,
input_model_temp,
input_model_top_p
],
[output_midi_title,
output_midi_summary,
output_midi,
output_audio,
output_plot],
Generate_POP_Section,
cache_examples=True,
cache_mode='eager'
)
app.queue().launch() |