File size: 12,131 Bytes
07c6c95
 
 
cdb1fca
 
 
 
97e80ab
07c6c95
9cd9af8
f9a9fdd
97e80ab
cdb1fca
5681620
cdb1fca
67d849b
cdb1fca
 
 
 
 
 
2f9b3e2
9cd9af8
fec90c5
07c6c95
 
 
9cd9af8
07c6c95
61d2e2e
 
 
 
 
9cd9af8
07c6c95
 
 
 
61daf8d
07c6c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30ed745
07c6c95
 
 
 
 
 
 
 
 
30ed745
8c321c5
07c6c95
 
 
30ed745
07c6c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5681620
9cd9af8
07c6c95
 
9cd9af8
 
8979d67
5681620
d7dbf57
 
 
15d8aad
 
 
07c6c95
2f9b3e2
cdb1fca
 
 
 
9cd9af8
e4d1c33
cdb1fca
d7dbf57
 
 
 
15d8aad
 
9cd9af8
cdb1fca
 
9cd9af8
d7dbf57
9cd9af8
730c3b0
 
 
 
 
 
 
 
2d2f60f
 
 
730c3b0
f4d6d33
 
 
730c3b0
 
5681620
 
 
3eaf1f8
9800628
5681620
 
8c321c5
730c3b0
15d8aad
730c3b0
15d8aad
8c321c5
 
 
 
730c3b0
9800628
 
 
 
9cd9af8
730c3b0
9cd9af8
 
 
fa31cf9
 
 
 
 
 
 
 
 
 
 
15d8aad
fa31cf9
9800628
9cd9af8
 
9800628
 
 
30ed745
9800628
30ed745
9800628
30ed745
9800628
30ed745
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fec312
30ed745
 
 
 
5fec312
30ed745
 
 
9800628
30ed745
9800628
 
30ed745
9cd9af8
9800628
9cd9af8
 
 
e4d1c33
cdb1fca
9cd9af8
 
 
 
 
 
cdb1fca
9cd9af8
 
 
 
 
 
 
 
cdb1fca
60bb1af
9cd9af8
 
 
15d8aad
9cd9af8
cdb1fca
9cd9af8
 
cdb1fca
9cd9af8
 
 
 
 
fa31cf9
cdb1fca
 
 
 
 
 
 
 
 
 
 
 
67d849b
cdb1fca
67d849b
cdb1fca
67d849b
30ed745
 
cdb1fca
30ed745
 
cdb1fca
67d849b
8c321c5
 
d7dbf57
79018d5
1dd49e0
8c321c5
d7dbf57
 
 
15d8aad
 
8c321c5
 
136e3ab
cdb1fca
 
 
8c321c5
d34b744
cdb1fca
 
 
8c321c5
 
 
15d8aad
 
 
8c321c5
 
 
 
 
 
 
 
15d8aad
 
 
8c321c5
 
 
 
15d8aad
 
 
8c321c5
 
 
 
 
 
 
 
5fec312
8c321c5
cdb1fca
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
#==================================================================
# https://huggingface.co/spaces/asigalov61/Popular-Hook-Transformer
#==================================================================

import time as reqtime
import datetime
from pytz import timezone

import statistics
import re
import tqdm

import gradio as gr
import spaces

from x_transformer_1_23_2 import *
import random

from midi_to_colab_audio import midi_to_colab_audio
import TMIDIX

import matplotlib.pyplot as plt
    
#=====================================================================================

print('=' * 70)
print('Popular Hook Transformer')
print('=' * 70)

print('Loading Popular Hook Transformer training data...')
print('=' * 70)

melody_chords_f = TMIDIX.Tegridy_Any_Pickle_File_Reader('Popular_Hook_Transformer_Training_Data.pickle')

print('=' * 70)

#====================================================================================

SEQ_LEN = 512
PAD_IDX = 918
DEVICE = 'cpu'

#====================================================================================

def str_strip(string):
    return re.sub(r'[^A-Za-z-]+', '', string).rstrip('-')

def mode_time(seq):
    return statistics.mode([t for t in seq if 0 < t < 128])

def mode_dur(seq):
    return statistics.mode([t-128 for t in seq if 128 < t < 256])

def mode_pitch(seq):
    return statistics.mode([t % 128 for t in seq if 256 < t < 512])

sections_dict = sorted(set([str_strip(s[2]).rstrip('-') for s in melody_chords_f]))

train_data = []

for m in tqdm.tqdm(melody_chords_f):
    
    if 64 < len(m[5]) < 506:
        
        for tv in range(-3, 3):
        
            section = str_strip(m[2])
            section_tok = sections_dict.index(section)
            
            score = [t+tv if 256 < t < 512 else t for t in m[5]]

            seq = [916] + [section_tok+512, mode_time(score)+532, mode_dur(score)+660, mode_pitch(score)+tv+788]

            seq += score

            seq += [917]

            seq = seq + [PAD_IDX] * (SEQ_LEN - len(seq))

            train_data.append(seq)

#====================================================================================

print('Done!')
print('=' * 70)
print('All data is good:', len(max(train_data, key=len)) == len(min(train_data, key=len)))
print('=' * 70)
print('Randomizing training data...')
random.shuffle(train_data)
print('Done!')
print('=' * 70)
print('Total length of training data:', len(train_data))
print('=' * 70)

#====================================================================================

print('Loading Popular Hook Transformer pre-trained model...')
print('=' * 70)

print('Instantiating model...')

model = TransformerWrapper(
    num_tokens = PAD_IDX+1,
    max_seq_len = SEQ_LEN,
    attn_layers = Decoder(dim = 1024, 
                          depth = 4, 
                          heads = 32,
                          rotary_pos_emb = True,
                          attn_flash = True
                         )
    )

model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)

print('=' * 70)
print('Loading model checkpoint...')

model_path = 'Popular_Hook_Transformer_Small_Trained_Model_10869_steps_0.2308_loss_0.9252_acc.pth'

model.load_state_dict(torch.load(model_path, map_location='cpu'))

print('Done!')
print('=' * 70)

#====================================================================================

@spaces.GPU
def Generate_POP_Section(input_comp_section, 
                         input_mode_time, 
                         input_mode_dur,
                         input_mode_ptc,
                         input_model_temp,
                         input_model_top_p
                         ):
    
    print('=' * 70)
    print('Req start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    start_time = reqtime.time()

    print('=' * 70)
    print('Requested settings:')
    print('-' * 70)
    print('Composition section:', input_comp_section)
    print('Mode time:', input_mode_time)
    print('Mode duration:', input_mode_dur)
    print('Mode pitch:', input_mode_ptc)
    print('Model temperature:', input_model_temp)
    print('Model top p:', input_model_top_p)
    print('=' * 70)

    #===============================================================================

    print('Generating...')
    
    if input_comp_section == 'random':
        seq = [916]

    else:
        seq = [916, sections_dict.index(input_comp_section)+512]

        input_seq = [input_mode_time, input_mode_dur, input_mode_ptc]
        input_seq_toks = [input_mode_time+532, input_mode_dur+660, input_mode_ptc+788]

        if 0 in input_seq:
            input_seq = input_seq_toks[:input_seq.index(0)]

        else:
            input_seq = input_seq_toks

        seq += input_seq

    model.to(DEVICE)
    model.eval()

    x = torch.LongTensor(seq).to(DEVICE)
    
    with torch.amp.autocast(device_type=DEVICE, dtype=torch.bfloat16):
        
        out = model.generate(x,
                             512-len(seq),
                             temperature=input_model_temp,
                             filter_logits_fn=top_p,
                             filter_kwargs={'thres': input_model_top_p},
                             eos_token=917,
                             return_prime=True,
                             verbose=True)

    song = out.tolist()[0]

    print('Done!')
    print('=' * 70)
        
    #===============================================================================
    
    print('Rendering results...')
    
    print('=' * 70)
    
    comp_section = sections_dict[song[1]-512]
    comp_mode_time = song[2]-532
    comp_mode_dur = song[3]-660
    comp_mode_ptc = song[4]-788
    
    comp_summary = ''

    comp_summary += 'Generated section: ' + str(comp_section) + '\n'
    comp_summary += 'Generated mode time: ' + str(comp_mode_time) + '\n'
    comp_summary += 'Generated mode duration: ' + str(comp_mode_dur) + '\n'
    comp_summary += 'Generated mode pitch: ' + str(comp_mode_ptc)
    
    print('Sample INTs', song[:5])
    print('=' * 70)

    song_f = []

    time = 0
    dur = 0
    vel = 90
    pitch = 0
    channel = 0
    
    for ss in song:
    
      if 0 <= ss < 128:
    
          time += ss * 32
    
      if 128 <= ss < 256:
    
          dur = (ss-128)* 32
    
      if 256 <= ss < 512:

          pitch = (ss-256) % 128
          cha = (ss-256) // 128

          if cha == 0:
              channel = 3
              vel = 110+(pitch % 12)
              patch = 40
              
          else:
              channel = 0
              vel = max(40, pitch)
              patch = 0
    
          song_f.append(['note', time, dur, channel, pitch, vel, patch ])

    fn1 = 'Popular-Hook-Transformer-Composition'

    detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
                                                              output_signature = 'Popular Hook Transformer',
                                                              output_file_name = fn1,
                                                              track_name='Project Los Angeles'
                                                              )
    
    new_fn = fn1+'.mid'
            
    
    audio = midi_to_colab_audio(new_fn, 
                        soundfont_path=soundfont,
                        sample_rate=16000,
                        volume_scale=10,
                        output_for_gradio=True
                        )
    
    print('Done!')
    print('=' * 70)

    #========================================================

    output_midi_title = str(fn1)
    output_midi = str(new_fn)
    output_audio = (16000, audio)
    
    output_plot = TMIDIX.plot_ms_SONG(song_f, plot_title=output_midi_title, return_plt=True)

    print('Output MIDI file name:', output_midi)
    print('Output MIDI title:', output_midi_title)
    print('Output MIDI summary:', comp_summary)
    print('=' * 70) 
    

    #========================================================
    
    print('-' * 70)
    print('Req end time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('-' * 70)
    print('Req execution time:', (reqtime.time() - start_time), 'sec')

    return output_midi_title, comp_summary, output_midi, output_audio, output_plot

# =================================================================================================

if __name__ == "__main__":
    
    PDT = timezone('US/Pacific')
    
    print('=' * 70)
    print('App start time: {:%Y-%m-%d %H:%M:%S}'.format(datetime.datetime.now(PDT)))
    print('=' * 70)

    soundfont = "SGM-v2.01-YamahaGrand-Guit-Bass-v2.7.sf2"

    app = gr.Blocks()
    
    with app:
        
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Popular Hook Transformer</h1>")
        gr.Markdown("<h1 style='text-align: center; margin-bottom: 1rem'>Generate unique POP music sections</h1>")
        gr.Markdown(
            "This is a demo for popular-hook MIDI Dataset\n\n"
            "Check out [popular-hook](https://huggingface.co/datasets/NEXTLab-ZJU/popular-hook) on Hugging Face!\n\n"
        )
        
        gr.Markdown("## Select POP composition section to generate:")

        input_comp_section = gr.Dropdown(sections_dict + ['random'], label="Composition section", value='random')
        
        gr.Markdown("## Select generation options:")

        input_mode_time = gr.Slider(0, 127, value=0, step=1, label="Composition mode time")
        input_mode_dur = gr.Slider(0, 127, value=0, step=1, label="Composition mode dur")
        input_mode_ptc = gr.Slider(0, 127, value=0, step=1, label="Composition mode pitch")
        input_model_temp = gr.Slider(0.1, 1, value=0.9, step=0.01, label="Model temperature")
        input_model_top_p = gr.Slider(0.1, 1, value=0.96, step=0.01, label="Model sampling top p value")
        
        run_btn = gr.Button("Generate", variant="primary")
        
        gr.Markdown("## Output results")

        output_midi_title = gr.Textbox(label="Output MIDI title")
        output_midi_summary = gr.Textbox(label="Output MIDI summary")
        output_audio = gr.Audio(label="Output MIDI audio", format="mp3", elem_id="midi_audio")
        output_plot = gr.Plot(label="Output MIDI score plot")
        output_midi = gr.File(label="Output MIDI file", file_types=[".mid"])

        run_event = run_btn.click(Generate_POP_Section, [input_comp_section, 
                                                        input_mode_time, 
                                                        input_mode_dur,
                                                        input_mode_ptc,
                                                        input_model_temp,
                                                        input_model_top_p
                                                        ],
                                                        [output_midi_title,
                                                         output_midi_summary,
                                                         output_midi, 
                                                         output_audio, 
                                                         output_plot]
                                                        )

        gr.Examples([["intro", 10, 15, 72, 0.9, 0.96],
                     ["chorus", 10, 15, 72, 0.9, 0.96],
                     ["bridge", 10, 15, 72, 0.9, 0.96]
                    ],
                    [input_comp_section, 
                    input_mode_time, 
                    input_mode_dur,
                    input_mode_ptc,
                    input_model_temp,
                    input_model_top_p
                    ],
                    [output_midi_title,
                    output_midi_summary,
                    output_midi, 
                    output_audio, 
                    output_plot],
                    Generate_POP_Section,
                    cache_examples=True,
                    cache_mode='eager'
                    )
        
        app.queue().launch()