Spaces:
Sleeping
Sleeping
#! /usr/bin/python3 | |
r'''############################################################################### | |
################################################################################### | |
# | |
# | |
# Tegridy MIDI X Module (TMIDI X / tee-midi eks) | |
# Version 1.0 | |
# | |
# NOTE: TMIDI X Module starts after the partial MIDI.py module @ line 1342 | |
# | |
# Based upon MIDI.py module v.6.7. by Peter Billam / pjb.com.au | |
# | |
# Project Los Angeles | |
# | |
# Tegridy Code 2021 | |
# | |
# https://github.com/Tegridy-Code/Project-Los-Angeles | |
# | |
# | |
################################################################################### | |
################################################################################### | |
# Copyright 2021 Project Los Angeles / Tegridy Code | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
################################################################################### | |
################################################################################### | |
# | |
# PARTIAL MIDI.py Module v.6.7. by Peter Billam | |
# Please see TMIDI 2.3/tegridy-tools repo for full MIDI.py module code | |
# | |
# Or you can always download the latest full version from: | |
# | |
# https://pjb.com.au/ | |
# https://peterbillam.gitlab.io/miditools/ | |
# | |
# Copyright 2020 Peter Billam | |
# | |
################################################################################### | |
###################################################################################''' | |
import sys, struct, copy | |
Version = '6.7' | |
VersionDate = '20201120' | |
_previous_warning = '' # 5.4 | |
_previous_times = 0 # 5.4 | |
#------------------------------- Encoding stuff -------------------------- | |
def opus2midi(opus=[], text_encoding='ISO-8859-1'): | |
r'''The argument is a list: the first item in the list is the "ticks" | |
parameter, the others are the tracks. Each track is a list | |
of midi-events, and each event is itself a list; see above. | |
opus2midi() returns a bytestring of the MIDI, which can then be | |
written either to a file opened in binary mode (mode='wb'), | |
or to stdout by means of: sys.stdout.buffer.write() | |
my_opus = [ | |
96, | |
[ # track 0: | |
['patch_change', 0, 1, 8], # and these are the events... | |
['note_on', 5, 1, 25, 96], | |
['note_off', 96, 1, 25, 0], | |
['note_on', 0, 1, 29, 96], | |
['note_off', 96, 1, 29, 0], | |
], # end of track 0 | |
] | |
my_midi = opus2midi(my_opus) | |
sys.stdout.buffer.write(my_midi) | |
''' | |
if len(opus) < 2: | |
opus=[1000, [],] | |
tracks = copy.deepcopy(opus) | |
ticks = int(tracks.pop(0)) | |
ntracks = len(tracks) | |
if ntracks == 1: | |
format = 0 | |
else: | |
format = 1 | |
my_midi = b"MThd\x00\x00\x00\x06"+struct.pack('>HHH',format,ntracks,ticks) | |
for track in tracks: | |
events = _encode(track, text_encoding=text_encoding) | |
my_midi += b'MTrk' + struct.pack('>I',len(events)) + events | |
_clean_up_warnings() | |
return my_midi | |
def score2opus(score=None, text_encoding='ISO-8859-1'): | |
r''' | |
The argument is a list: the first item in the list is the "ticks" | |
parameter, the others are the tracks. Each track is a list | |
of score-events, and each event is itself a list. A score-event | |
is similar to an opus-event (see above), except that in a score: | |
1) the times are expressed as an absolute number of ticks | |
from the track's start time | |
2) the pairs of 'note_on' and 'note_off' events in an "opus" | |
are abstracted into a single 'note' event in a "score": | |
['note', start_time, duration, channel, pitch, velocity] | |
score2opus() returns a list specifying the equivalent "opus". | |
my_score = [ | |
96, | |
[ # track 0: | |
['patch_change', 0, 1, 8], | |
['note', 5, 96, 1, 25, 96], | |
['note', 101, 96, 1, 29, 96] | |
], # end of track 0 | |
] | |
my_opus = score2opus(my_score) | |
''' | |
if len(score) < 2: | |
score=[1000, [],] | |
tracks = copy.deepcopy(score) | |
ticks = int(tracks.pop(0)) | |
opus_tracks = [] | |
for scoretrack in tracks: | |
time2events = dict([]) | |
for scoreevent in scoretrack: | |
if scoreevent[0] == 'note': | |
note_on_event = ['note_on',scoreevent[1], | |
scoreevent[3],scoreevent[4],scoreevent[5]] | |
note_off_event = ['note_off',scoreevent[1]+scoreevent[2], | |
scoreevent[3],scoreevent[4],scoreevent[5]] | |
if time2events.get(note_on_event[1]): | |
time2events[note_on_event[1]].append(note_on_event) | |
else: | |
time2events[note_on_event[1]] = [note_on_event,] | |
if time2events.get(note_off_event[1]): | |
time2events[note_off_event[1]].append(note_off_event) | |
else: | |
time2events[note_off_event[1]] = [note_off_event,] | |
continue | |
if time2events.get(scoreevent[1]): | |
time2events[scoreevent[1]].append(scoreevent) | |
else: | |
time2events[scoreevent[1]] = [scoreevent,] | |
sorted_times = [] # list of keys | |
for k in time2events.keys(): | |
sorted_times.append(k) | |
sorted_times.sort() | |
sorted_events = [] # once-flattened list of values sorted by key | |
for time in sorted_times: | |
sorted_events.extend(time2events[time]) | |
abs_time = 0 | |
for event in sorted_events: # convert abs times => delta times | |
delta_time = event[1] - abs_time | |
abs_time = event[1] | |
event[1] = delta_time | |
opus_tracks.append(sorted_events) | |
opus_tracks.insert(0,ticks) | |
_clean_up_warnings() | |
return opus_tracks | |
def score2midi(score=None, text_encoding='ISO-8859-1'): | |
r''' | |
Translates a "score" into MIDI, using score2opus() then opus2midi() | |
''' | |
return opus2midi(score2opus(score, text_encoding), text_encoding) | |
#--------------------------- Decoding stuff ------------------------ | |
def midi2opus(midi=b'', do_not_check_MIDI_signature=False): | |
r'''Translates MIDI into a "opus". For a description of the | |
"opus" format, see opus2midi() | |
''' | |
my_midi=bytearray(midi) | |
if len(my_midi) < 4: | |
_clean_up_warnings() | |
return [1000,[],] | |
id = bytes(my_midi[0:4]) | |
if id != b'MThd': | |
_warn("midi2opus: midi starts with "+str(id)+" instead of 'MThd'") | |
_clean_up_warnings() | |
if do_not_check_MIDI_signature == False: | |
return [1000,[],] | |
[length, format, tracks_expected, ticks] = struct.unpack( | |
'>IHHH', bytes(my_midi[4:14])) | |
if length != 6: | |
_warn("midi2opus: midi header length was "+str(length)+" instead of 6") | |
_clean_up_warnings() | |
return [1000,[],] | |
my_opus = [ticks,] | |
my_midi = my_midi[14:] | |
track_num = 1 # 5.1 | |
while len(my_midi) >= 8: | |
track_type = bytes(my_midi[0:4]) | |
if track_type != b'MTrk': | |
#_warn('midi2opus: Warning: track #'+str(track_num)+' type is '+str(track_type)+" instead of b'MTrk'") | |
pass | |
[track_length] = struct.unpack('>I', my_midi[4:8]) | |
my_midi = my_midi[8:] | |
if track_length > len(my_midi): | |
_warn('midi2opus: track #'+str(track_num)+' length '+str(track_length)+' is too large') | |
_clean_up_warnings() | |
return my_opus # 5.0 | |
my_midi_track = my_midi[0:track_length] | |
my_track = _decode(my_midi_track) | |
my_opus.append(my_track) | |
my_midi = my_midi[track_length:] | |
track_num += 1 # 5.1 | |
_clean_up_warnings() | |
return my_opus | |
def opus2score(opus=[]): | |
r'''For a description of the "opus" and "score" formats, | |
see opus2midi() and score2opus(). | |
''' | |
if len(opus) < 2: | |
_clean_up_warnings() | |
return [1000,[],] | |
tracks = copy.deepcopy(opus) # couple of slices probably quicker... | |
ticks = int(tracks.pop(0)) | |
score = [ticks,] | |
for opus_track in tracks: | |
ticks_so_far = 0 | |
score_track = [] | |
chapitch2note_on_events = dict([]) # 4.0 | |
for opus_event in opus_track: | |
ticks_so_far += opus_event[1] | |
if opus_event[0] == 'note_off' or (opus_event[0] == 'note_on' and opus_event[4] == 0): # 4.8 | |
cha = opus_event[2] | |
pitch = opus_event[3] | |
key = cha*128 + pitch | |
if chapitch2note_on_events.get(key): | |
new_event = chapitch2note_on_events[key].pop(0) | |
new_event[2] = ticks_so_far - new_event[1] | |
score_track.append(new_event) | |
elif pitch > 127: | |
pass #_warn('opus2score: note_off with no note_on, bad pitch='+str(pitch)) | |
else: | |
pass #_warn('opus2score: note_off with no note_on cha='+str(cha)+' pitch='+str(pitch)) | |
elif opus_event[0] == 'note_on': | |
cha = opus_event[2] | |
pitch = opus_event[3] | |
key = cha*128 + pitch | |
new_event = ['note',ticks_so_far,0,cha,pitch, opus_event[4]] | |
if chapitch2note_on_events.get(key): | |
chapitch2note_on_events[key].append(new_event) | |
else: | |
chapitch2note_on_events[key] = [new_event,] | |
else: | |
opus_event[1] = ticks_so_far | |
score_track.append(opus_event) | |
# check for unterminated notes (Oisín) -- 5.2 | |
for chapitch in chapitch2note_on_events: | |
note_on_events = chapitch2note_on_events[chapitch] | |
for new_e in note_on_events: | |
new_e[2] = ticks_so_far - new_e[1] | |
score_track.append(new_e) | |
pass #_warn("opus2score: note_on with no note_off cha="+str(new_e[3])+' pitch='+str(new_e[4])+'; adding note_off at end') | |
score.append(score_track) | |
_clean_up_warnings() | |
return score | |
def midi2score(midi=b'', do_not_check_MIDI_signature=False): | |
r''' | |
Translates MIDI into a "score", using midi2opus() then opus2score() | |
''' | |
return opus2score(midi2opus(midi, do_not_check_MIDI_signature)) | |
def midi2ms_score(midi=b'', do_not_check_MIDI_signature=False): | |
r''' | |
Translates MIDI into a "score" with one beat per second and one | |
tick per millisecond, using midi2opus() then to_millisecs() | |
then opus2score() | |
''' | |
return opus2score(to_millisecs(midi2opus(midi, do_not_check_MIDI_signature))) | |
def midi2single_track_ms_score(midi_path_or_bytes, | |
recalculate_channels = False, | |
pass_old_timings_events= False, | |
verbose = False, | |
do_not_check_MIDI_signature=False | |
): | |
r''' | |
Translates MIDI into a single track "score" with 16 instruments and one beat per second and one | |
tick per millisecond | |
''' | |
if type(midi_path_or_bytes) == bytes: | |
midi_data = midi_path_or_bytes | |
elif type(midi_path_or_bytes) == str: | |
midi_data = open(midi_path_or_bytes, 'rb').read() | |
score = midi2score(midi_data, do_not_check_MIDI_signature) | |
if recalculate_channels: | |
events_matrixes = [] | |
itrack = 1 | |
events_matrixes_channels = [] | |
while itrack < len(score): | |
events_matrix = [] | |
for event in score[itrack]: | |
if event[0] == 'note' and event[3] != 9: | |
event[3] = (16 * (itrack-1)) + event[3] | |
if event[3] not in events_matrixes_channels: | |
events_matrixes_channels.append(event[3]) | |
events_matrix.append(event) | |
events_matrixes.append(events_matrix) | |
itrack += 1 | |
events_matrix1 = [] | |
for e in events_matrixes: | |
events_matrix1.extend(e) | |
if verbose: | |
if len(events_matrixes_channels) > 16: | |
print('MIDI has', len(events_matrixes_channels), 'instruments!', len(events_matrixes_channels) - 16, 'instrument(s) will be removed!') | |
for e in events_matrix1: | |
if e[0] == 'note' and e[3] != 9: | |
if e[3] in events_matrixes_channels[:15]: | |
if events_matrixes_channels[:15].index(e[3]) < 9: | |
e[3] = events_matrixes_channels[:15].index(e[3]) | |
else: | |
e[3] = events_matrixes_channels[:15].index(e[3])+1 | |
else: | |
events_matrix1.remove(e) | |
if e[0] in ['patch_change', 'control_change', 'channel_after_touch', 'key_after_touch', 'pitch_wheel_change'] and e[2] != 9: | |
if e[2] in [e % 16 for e in events_matrixes_channels[:15]]: | |
if [e % 16 for e in events_matrixes_channels[:15]].index(e[2]) < 9: | |
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2]) | |
else: | |
e[2] = [e % 16 for e in events_matrixes_channels[:15]].index(e[2])+1 | |
else: | |
events_matrix1.remove(e) | |
else: | |
events_matrix1 = [] | |
itrack = 1 | |
while itrack < len(score): | |
for event in score[itrack]: | |
events_matrix1.append(event) | |
itrack += 1 | |
opus = score2opus([score[0], events_matrix1]) | |
ms_score = opus2score(to_millisecs(opus, pass_old_timings_events=pass_old_timings_events)) | |
return ms_score | |
#------------------------ Other Transformations --------------------- | |
def to_millisecs(old_opus=None, desired_time_in_ms=1, pass_old_timings_events = False): | |
r'''Recallibrates all the times in an "opus" to use one beat | |
per second and one tick per millisecond. This makes it | |
hard to retrieve any information about beats or barlines, | |
but it does make it easy to mix different scores together. | |
''' | |
if old_opus == None: | |
return [1000 * desired_time_in_ms,[],] | |
try: | |
old_tpq = int(old_opus[0]) | |
except IndexError: # 5.0 | |
_warn('to_millisecs: the opus '+str(type(old_opus))+' has no elements') | |
return [1000 * desired_time_in_ms,[],] | |
new_opus = [1000 * desired_time_in_ms,] | |
# 6.7 first go through building a table of set_tempos by absolute-tick | |
ticks2tempo = {} | |
itrack = 1 | |
while itrack < len(old_opus): | |
ticks_so_far = 0 | |
for old_event in old_opus[itrack]: | |
if old_event[0] == 'note': | |
raise TypeError('to_millisecs needs an opus, not a score') | |
ticks_so_far += old_event[1] | |
if old_event[0] == 'set_tempo': | |
ticks2tempo[ticks_so_far] = old_event[2] | |
itrack += 1 | |
# then get the sorted-array of their keys | |
tempo_ticks = [] # list of keys | |
for k in ticks2tempo.keys(): | |
tempo_ticks.append(k) | |
tempo_ticks.sort() | |
# then go through converting to millisec, testing if the next | |
# set_tempo lies before the next track-event, and using it if so. | |
itrack = 1 | |
while itrack < len(old_opus): | |
ms_per_old_tick = 400 / old_tpq # float: will round later 6.3 | |
i_tempo_ticks = 0 | |
ticks_so_far = 0 | |
ms_so_far = 0.0 | |
previous_ms_so_far = 0.0 | |
if pass_old_timings_events: | |
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],['old_tpq', 0, old_tpq]] # new "crochet" is 1 sec | |
else: | |
new_track = [['set_tempo',0,1000000 * desired_time_in_ms],] # new "crochet" is 1 sec | |
for old_event in old_opus[itrack]: | |
# detect if ticks2tempo has something before this event | |
# 20160702 if ticks2tempo is at the same time, leave it | |
event_delta_ticks = old_event[1] * desired_time_in_ms | |
if (i_tempo_ticks < len(tempo_ticks) and | |
tempo_ticks[i_tempo_ticks] < (ticks_so_far + old_event[1]) * desired_time_in_ms): | |
delta_ticks = tempo_ticks[i_tempo_ticks] - ticks_so_far | |
ms_so_far += (ms_per_old_tick * delta_ticks * desired_time_in_ms) | |
ticks_so_far = tempo_ticks[i_tempo_ticks] | |
ms_per_old_tick = ticks2tempo[ticks_so_far] / (1000.0*old_tpq * desired_time_in_ms) | |
i_tempo_ticks += 1 | |
event_delta_ticks -= delta_ticks | |
new_event = copy.deepcopy(old_event) # now handle the new event | |
ms_so_far += (ms_per_old_tick * old_event[1] * desired_time_in_ms) | |
new_event[1] = round(ms_so_far - previous_ms_so_far) | |
if pass_old_timings_events: | |
if old_event[0] != 'set_tempo': | |
previous_ms_so_far = ms_so_far | |
new_track.append(new_event) | |
else: | |
new_event[0] = 'old_set_tempo' | |
previous_ms_so_far = ms_so_far | |
new_track.append(new_event) | |
else: | |
if old_event[0] != 'set_tempo': | |
previous_ms_so_far = ms_so_far | |
new_track.append(new_event) | |
ticks_so_far += event_delta_ticks | |
new_opus.append(new_track) | |
itrack += 1 | |
_clean_up_warnings() | |
return new_opus | |
def event2alsaseq(event=None): # 5.5 | |
r'''Converts an event into the format needed by the alsaseq module, | |
http://pp.com.mx/python/alsaseq | |
The type of track (opus or score) is autodetected. | |
''' | |
pass | |
def grep(score=None, channels=None): | |
r'''Returns a "score" containing only the channels specified | |
''' | |
if score == None: | |
return [1000,[],] | |
ticks = score[0] | |
new_score = [ticks,] | |
if channels == None: | |
return new_score | |
channels = set(channels) | |
global Event2channelindex | |
itrack = 1 | |
while itrack < len(score): | |
new_score.append([]) | |
for event in score[itrack]: | |
channel_index = Event2channelindex.get(event[0], False) | |
if channel_index: | |
if event[channel_index] in channels: | |
new_score[itrack].append(event) | |
else: | |
new_score[itrack].append(event) | |
itrack += 1 | |
return new_score | |
def play_score(score=None): | |
r'''Converts the "score" to midi, and feeds it into 'aplaymidi -' | |
''' | |
if score == None: | |
return | |
import subprocess | |
pipe = subprocess.Popen(['aplaymidi','-'], stdin=subprocess.PIPE) | |
if score_type(score) == 'opus': | |
pipe.stdin.write(opus2midi(score)) | |
else: | |
pipe.stdin.write(score2midi(score)) | |
pipe.stdin.close() | |
def score2stats(opus_or_score=None): | |
r'''Returns a dict of some basic stats about the score, like | |
bank_select (list of tuples (msb,lsb)), | |
channels_by_track (list of lists), channels_total (set), | |
general_midi_mode (list), | |
ntracks, nticks, patch_changes_by_track (list of dicts), | |
num_notes_by_channel (list of numbers), | |
patch_changes_total (set), | |
percussion (dict histogram of channel 9 events), | |
pitches (dict histogram of pitches on channels other than 9), | |
pitch_range_by_track (list, by track, of two-member-tuples), | |
pitch_range_sum (sum over tracks of the pitch_ranges), | |
''' | |
bank_select_msb = -1 | |
bank_select_lsb = -1 | |
bank_select = [] | |
channels_by_track = [] | |
channels_total = set([]) | |
general_midi_mode = [] | |
num_notes_by_channel = dict([]) | |
patches_used_by_track = [] | |
patches_used_total = set([]) | |
patch_changes_by_track = [] | |
patch_changes_total = set([]) | |
percussion = dict([]) # histogram of channel 9 "pitches" | |
pitches = dict([]) # histogram of pitch-occurrences channels 0-8,10-15 | |
pitch_range_sum = 0 # u pitch-ranges of each track | |
pitch_range_by_track = [] | |
is_a_score = True | |
if opus_or_score == None: | |
return {'bank_select':[], 'channels_by_track':[], 'channels_total':[], | |
'general_midi_mode':[], 'ntracks':0, 'nticks':0, | |
'num_notes_by_channel':dict([]), | |
'patch_changes_by_track':[], 'patch_changes_total':[], | |
'percussion':{}, 'pitches':{}, 'pitch_range_by_track':[], | |
'ticks_per_quarter':0, 'pitch_range_sum':0} | |
ticks_per_quarter = opus_or_score[0] | |
i = 1 # ignore first element, which is ticks | |
nticks = 0 | |
while i < len(opus_or_score): | |
highest_pitch = 0 | |
lowest_pitch = 128 | |
channels_this_track = set([]) | |
patch_changes_this_track = dict({}) | |
for event in opus_or_score[i]: | |
if event[0] == 'note': | |
num_notes_by_channel[event[3]] = num_notes_by_channel.get(event[3],0) + 1 | |
if event[3] == 9: | |
percussion[event[4]] = percussion.get(event[4],0) + 1 | |
else: | |
pitches[event[4]] = pitches.get(event[4],0) + 1 | |
if event[4] > highest_pitch: | |
highest_pitch = event[4] | |
if event[4] < lowest_pitch: | |
lowest_pitch = event[4] | |
channels_this_track.add(event[3]) | |
channels_total.add(event[3]) | |
finish_time = event[1] + event[2] | |
if finish_time > nticks: | |
nticks = finish_time | |
elif event[0] == 'note_off' or (event[0] == 'note_on' and event[4] == 0): # 4.8 | |
finish_time = event[1] | |
if finish_time > nticks: | |
nticks = finish_time | |
elif event[0] == 'note_on': | |
is_a_score = False | |
num_notes_by_channel[event[2]] = num_notes_by_channel.get(event[2],0) + 1 | |
if event[2] == 9: | |
percussion[event[3]] = percussion.get(event[3],0) + 1 | |
else: | |
pitches[event[3]] = pitches.get(event[3],0) + 1 | |
if event[3] > highest_pitch: | |
highest_pitch = event[3] | |
if event[3] < lowest_pitch: | |
lowest_pitch = event[3] | |
channels_this_track.add(event[2]) | |
channels_total.add(event[2]) | |
elif event[0] == 'patch_change': | |
patch_changes_this_track[event[2]] = event[3] | |
patch_changes_total.add(event[3]) | |
elif event[0] == 'control_change': | |
if event[3] == 0: # bank select MSB | |
bank_select_msb = event[4] | |
elif event[3] == 32: # bank select LSB | |
bank_select_lsb = event[4] | |
if bank_select_msb >= 0 and bank_select_lsb >= 0: | |
bank_select.append((bank_select_msb,bank_select_lsb)) | |
bank_select_msb = -1 | |
bank_select_lsb = -1 | |
elif event[0] == 'sysex_f0': | |
if _sysex2midimode.get(event[2], -1) >= 0: | |
general_midi_mode.append(_sysex2midimode.get(event[2])) | |
if is_a_score: | |
if event[1] > nticks: | |
nticks = event[1] | |
else: | |
nticks += event[1] | |
if lowest_pitch == 128: | |
lowest_pitch = 0 | |
channels_by_track.append(channels_this_track) | |
patch_changes_by_track.append(patch_changes_this_track) | |
pitch_range_by_track.append((lowest_pitch,highest_pitch)) | |
pitch_range_sum += (highest_pitch-lowest_pitch) | |
i += 1 | |
return {'bank_select':bank_select, | |
'channels_by_track':channels_by_track, | |
'channels_total':channels_total, | |
'general_midi_mode':general_midi_mode, | |
'ntracks':len(opus_or_score)-1, | |
'nticks':nticks, | |
'num_notes_by_channel':num_notes_by_channel, | |
'patch_changes_by_track':patch_changes_by_track, | |
'patch_changes_total':patch_changes_total, | |
'percussion':percussion, | |
'pitches':pitches, | |
'pitch_range_by_track':pitch_range_by_track, | |
'pitch_range_sum':pitch_range_sum, | |
'ticks_per_quarter':ticks_per_quarter} | |
#----------------------------- Event stuff -------------------------- | |
_sysex2midimode = { | |
"\x7E\x7F\x09\x01\xF7": 1, | |
"\x7E\x7F\x09\x02\xF7": 0, | |
"\x7E\x7F\x09\x03\xF7": 2, | |
} | |
# Some public-access tuples: | |
MIDI_events = tuple('''note_off note_on key_after_touch | |
control_change patch_change channel_after_touch | |
pitch_wheel_change'''.split()) | |
Text_events = tuple('''text_event copyright_text_event | |
track_name instrument_name lyric marker cue_point text_event_08 | |
text_event_09 text_event_0a text_event_0b text_event_0c | |
text_event_0d text_event_0e text_event_0f'''.split()) | |
Nontext_meta_events = tuple('''end_track set_tempo | |
smpte_offset time_signature key_signature sequencer_specific | |
raw_meta_event sysex_f0 sysex_f7 song_position song_select | |
tune_request'''.split()) | |
# unsupported: raw_data | |
# Actually, 'tune_request' is is F-series event, not strictly a meta-event... | |
Meta_events = Text_events + Nontext_meta_events | |
All_events = MIDI_events + Meta_events | |
# And three dictionaries: | |
Number2patch = { # General MIDI patch numbers: | |
0:'Acoustic Grand', | |
1:'Bright Acoustic', | |
2:'Electric Grand', | |
3:'Honky-Tonk', | |
4:'Electric Piano 1', | |
5:'Electric Piano 2', | |
6:'Harpsichord', | |
7:'Clav', | |
8:'Celesta', | |
9:'Glockenspiel', | |
10:'Music Box', | |
11:'Vibraphone', | |
12:'Marimba', | |
13:'Xylophone', | |
14:'Tubular Bells', | |
15:'Dulcimer', | |
16:'Drawbar Organ', | |
17:'Percussive Organ', | |
18:'Rock Organ', | |
19:'Church Organ', | |
20:'Reed Organ', | |
21:'Accordion', | |
22:'Harmonica', | |
23:'Tango Accordion', | |
24:'Acoustic Guitar(nylon)', | |
25:'Acoustic Guitar(steel)', | |
26:'Electric Guitar(jazz)', | |
27:'Electric Guitar(clean)', | |
28:'Electric Guitar(muted)', | |
29:'Overdriven Guitar', | |
30:'Distortion Guitar', | |
31:'Guitar Harmonics', | |
32:'Acoustic Bass', | |
33:'Electric Bass(finger)', | |
34:'Electric Bass(pick)', | |
35:'Fretless Bass', | |
36:'Slap Bass 1', | |
37:'Slap Bass 2', | |
38:'Synth Bass 1', | |
39:'Synth Bass 2', | |
40:'Violin', | |
41:'Viola', | |
42:'Cello', | |
43:'Contrabass', | |
44:'Tremolo Strings', | |
45:'Pizzicato Strings', | |
46:'Orchestral Harp', | |
47:'Timpani', | |
48:'String Ensemble 1', | |
49:'String Ensemble 2', | |
50:'SynthStrings 1', | |
51:'SynthStrings 2', | |
52:'Choir Aahs', | |
53:'Voice Oohs', | |
54:'Synth Voice', | |
55:'Orchestra Hit', | |
56:'Trumpet', | |
57:'Trombone', | |
58:'Tuba', | |
59:'Muted Trumpet', | |
60:'French Horn', | |
61:'Brass Section', | |
62:'SynthBrass 1', | |
63:'SynthBrass 2', | |
64:'Soprano Sax', | |
65:'Alto Sax', | |
66:'Tenor Sax', | |
67:'Baritone Sax', | |
68:'Oboe', | |
69:'English Horn', | |
70:'Bassoon', | |
71:'Clarinet', | |
72:'Piccolo', | |
73:'Flute', | |
74:'Recorder', | |
75:'Pan Flute', | |
76:'Blown Bottle', | |
77:'Skakuhachi', | |
78:'Whistle', | |
79:'Ocarina', | |
80:'Lead 1 (square)', | |
81:'Lead 2 (sawtooth)', | |
82:'Lead 3 (calliope)', | |
83:'Lead 4 (chiff)', | |
84:'Lead 5 (charang)', | |
85:'Lead 6 (voice)', | |
86:'Lead 7 (fifths)', | |
87:'Lead 8 (bass+lead)', | |
88:'Pad 1 (new age)', | |
89:'Pad 2 (warm)', | |
90:'Pad 3 (polysynth)', | |
91:'Pad 4 (choir)', | |
92:'Pad 5 (bowed)', | |
93:'Pad 6 (metallic)', | |
94:'Pad 7 (halo)', | |
95:'Pad 8 (sweep)', | |
96:'FX 1 (rain)', | |
97:'FX 2 (soundtrack)', | |
98:'FX 3 (crystal)', | |
99:'FX 4 (atmosphere)', | |
100:'FX 5 (brightness)', | |
101:'FX 6 (goblins)', | |
102:'FX 7 (echoes)', | |
103:'FX 8 (sci-fi)', | |
104:'Sitar', | |
105:'Banjo', | |
106:'Shamisen', | |
107:'Koto', | |
108:'Kalimba', | |
109:'Bagpipe', | |
110:'Fiddle', | |
111:'Shanai', | |
112:'Tinkle Bell', | |
113:'Agogo', | |
114:'Steel Drums', | |
115:'Woodblock', | |
116:'Taiko Drum', | |
117:'Melodic Tom', | |
118:'Synth Drum', | |
119:'Reverse Cymbal', | |
120:'Guitar Fret Noise', | |
121:'Breath Noise', | |
122:'Seashore', | |
123:'Bird Tweet', | |
124:'Telephone Ring', | |
125:'Helicopter', | |
126:'Applause', | |
127:'Gunshot', | |
} | |
Notenum2percussion = { # General MIDI Percussion (on Channel 9): | |
35:'Acoustic Bass Drum', | |
36:'Bass Drum 1', | |
37:'Side Stick', | |
38:'Acoustic Snare', | |
39:'Hand Clap', | |
40:'Electric Snare', | |
41:'Low Floor Tom', | |
42:'Closed Hi-Hat', | |
43:'High Floor Tom', | |
44:'Pedal Hi-Hat', | |
45:'Low Tom', | |
46:'Open Hi-Hat', | |
47:'Low-Mid Tom', | |
48:'Hi-Mid Tom', | |
49:'Crash Cymbal 1', | |
50:'High Tom', | |
51:'Ride Cymbal 1', | |
52:'Chinese Cymbal', | |
53:'Ride Bell', | |
54:'Tambourine', | |
55:'Splash Cymbal', | |
56:'Cowbell', | |
57:'Crash Cymbal 2', | |
58:'Vibraslap', | |
59:'Ride Cymbal 2', | |
60:'Hi Bongo', | |
61:'Low Bongo', | |
62:'Mute Hi Conga', | |
63:'Open Hi Conga', | |
64:'Low Conga', | |
65:'High Timbale', | |
66:'Low Timbale', | |
67:'High Agogo', | |
68:'Low Agogo', | |
69:'Cabasa', | |
70:'Maracas', | |
71:'Short Whistle', | |
72:'Long Whistle', | |
73:'Short Guiro', | |
74:'Long Guiro', | |
75:'Claves', | |
76:'Hi Wood Block', | |
77:'Low Wood Block', | |
78:'Mute Cuica', | |
79:'Open Cuica', | |
80:'Mute Triangle', | |
81:'Open Triangle', | |
} | |
Event2channelindex = { 'note':3, 'note_off':2, 'note_on':2, | |
'key_after_touch':2, 'control_change':2, 'patch_change':2, | |
'channel_after_touch':2, 'pitch_wheel_change':2 | |
} | |
################################################################ | |
# The code below this line is full of frightening things, all to | |
# do with the actual encoding and decoding of binary MIDI data. | |
def _twobytes2int(byte_a): | |
r'''decode a 16 bit quantity from two bytes,''' | |
return (byte_a[1] | (byte_a[0] << 8)) | |
def _int2twobytes(int_16bit): | |
r'''encode a 16 bit quantity into two bytes,''' | |
return bytes([(int_16bit>>8) & 0xFF, int_16bit & 0xFF]) | |
def _read_14_bit(byte_a): | |
r'''decode a 14 bit quantity from two bytes,''' | |
return (byte_a[0] | (byte_a[1] << 7)) | |
def _write_14_bit(int_14bit): | |
r'''encode a 14 bit quantity into two bytes,''' | |
return bytes([int_14bit & 0x7F, (int_14bit>>7) & 0x7F]) | |
def _ber_compressed_int(integer): | |
r'''BER compressed integer (not an ASN.1 BER, see perlpacktut for | |
details). Its bytes represent an unsigned integer in base 128, | |
most significant digit first, with as few digits as possible. | |
Bit eight (the high bit) is set on each byte except the last. | |
''' | |
ber = bytearray(b'') | |
seven_bits = 0x7F & integer | |
ber.insert(0, seven_bits) # XXX surely should convert to a char ? | |
integer >>= 7 | |
while integer > 0: | |
seven_bits = 0x7F & integer | |
ber.insert(0, 0x80|seven_bits) # XXX surely should convert to a char ? | |
integer >>= 7 | |
return ber | |
def _unshift_ber_int(ba): | |
r'''Given a bytearray, returns a tuple of (the ber-integer at the | |
start, and the remainder of the bytearray). | |
''' | |
if not len(ba): # 6.7 | |
_warn('_unshift_ber_int: no integer found') | |
return ((0, b"")) | |
byte = ba.pop(0) | |
integer = 0 | |
while True: | |
integer += (byte & 0x7F) | |
if not (byte & 0x80): | |
return ((integer, ba)) | |
if not len(ba): | |
_warn('_unshift_ber_int: no end-of-integer found') | |
return ((0, ba)) | |
byte = ba.pop(0) | |
integer <<= 7 | |
def _clean_up_warnings(): # 5.4 | |
# Call this before returning from any publicly callable function | |
# whenever there's a possibility that a warning might have been printed | |
# by the function, or by any private functions it might have called. | |
global _previous_times | |
global _previous_warning | |
if _previous_times > 1: | |
# E:1176, 0: invalid syntax (<string>, line 1176) (syntax-error) ??? | |
# print(' previous message repeated '+str(_previous_times)+' times', file=sys.stderr) | |
# 6.7 | |
sys.stderr.write(' previous message repeated {0} times\n'.format(_previous_times)) | |
elif _previous_times > 0: | |
sys.stderr.write(' previous message repeated\n') | |
_previous_times = 0 | |
_previous_warning = '' | |
def _warn(s=''): | |
global _previous_times | |
global _previous_warning | |
if s == _previous_warning: # 5.4 | |
_previous_times = _previous_times + 1 | |
else: | |
_clean_up_warnings() | |
sys.stderr.write(str(s)+"\n") | |
_previous_warning = s | |
def _some_text_event(which_kind=0x01, text=b'some_text', text_encoding='ISO-8859-1'): | |
if str(type(text)).find("'str'") >= 0: # 6.4 test for back-compatibility | |
data = bytes(text, encoding=text_encoding) | |
else: | |
data = bytes(text) | |
return b'\xFF'+bytes((which_kind,))+_ber_compressed_int(len(data))+data | |
def _consistentise_ticks(scores): # 3.6 | |
# used by mix_scores, merge_scores, concatenate_scores | |
if len(scores) == 1: | |
return copy.deepcopy(scores) | |
are_consistent = True | |
ticks = scores[0][0] | |
iscore = 1 | |
while iscore < len(scores): | |
if scores[iscore][0] != ticks: | |
are_consistent = False | |
break | |
iscore += 1 | |
if are_consistent: | |
return copy.deepcopy(scores) | |
new_scores = [] | |
iscore = 0 | |
while iscore < len(scores): | |
score = scores[iscore] | |
new_scores.append(opus2score(to_millisecs(score2opus(score)))) | |
iscore += 1 | |
return new_scores | |
########################################################################### | |
def _decode(trackdata=b'', exclude=None, include=None, | |
event_callback=None, exclusive_event_callback=None, no_eot_magic=False): | |
r'''Decodes MIDI track data into an opus-style list of events. | |
The options: | |
'exclude' is a list of event types which will be ignored SHOULD BE A SET | |
'include' (and no exclude), makes exclude a list | |
of all possible events, /minus/ what include specifies | |
'event_callback' is a coderef | |
'exclusive_event_callback' is a coderef | |
''' | |
trackdata = bytearray(trackdata) | |
if exclude == None: | |
exclude = [] | |
if include == None: | |
include = [] | |
if include and not exclude: | |
exclude = All_events | |
include = set(include) | |
exclude = set(exclude) | |
# Pointer = 0; not used here; we eat through the bytearray instead. | |
event_code = -1; # used for running status | |
event_count = 0; | |
events = [] | |
while(len(trackdata)): | |
# loop while there's anything to analyze ... | |
eot = False # When True, the event registrar aborts this loop | |
event_count += 1 | |
E = [] | |
# E for events - we'll feed it to the event registrar at the end. | |
# Slice off the delta time code, and analyze it | |
[time, remainder] = _unshift_ber_int(trackdata) | |
# Now let's see what we can make of the command | |
first_byte = trackdata.pop(0) & 0xFF | |
if (first_byte < 0xF0): # It's a MIDI event | |
if (first_byte & 0x80): | |
event_code = first_byte | |
else: | |
# It wants running status; use last event_code value | |
trackdata.insert(0, first_byte) | |
if (event_code == -1): | |
_warn("Running status not set; Aborting track.") | |
return [] | |
command = event_code & 0xF0 | |
channel = event_code & 0x0F | |
if (command == 0xF6): # 0-byte argument | |
pass | |
elif (command == 0xC0 or command == 0xD0): # 1-byte argument | |
parameter = trackdata.pop(0) # could be B | |
else: # 2-byte argument could be BB or 14-bit | |
parameter = (trackdata.pop(0), trackdata.pop(0)) | |
################################################################# | |
# MIDI events | |
if (command == 0x80): | |
if 'note_off' in exclude: | |
continue | |
E = ['note_off', time, channel, parameter[0], parameter[1]] | |
elif (command == 0x90): | |
if 'note_on' in exclude: | |
continue | |
E = ['note_on', time, channel, parameter[0], parameter[1]] | |
elif (command == 0xA0): | |
if 'key_after_touch' in exclude: | |
continue | |
E = ['key_after_touch',time,channel,parameter[0],parameter[1]] | |
elif (command == 0xB0): | |
if 'control_change' in exclude: | |
continue | |
E = ['control_change',time,channel,parameter[0],parameter[1]] | |
elif (command == 0xC0): | |
if 'patch_change' in exclude: | |
continue | |
E = ['patch_change', time, channel, parameter] | |
elif (command == 0xD0): | |
if 'channel_after_touch' in exclude: | |
continue | |
E = ['channel_after_touch', time, channel, parameter] | |
elif (command == 0xE0): | |
if 'pitch_wheel_change' in exclude: | |
continue | |
E = ['pitch_wheel_change', time, channel, | |
_read_14_bit(parameter)-0x2000] | |
else: | |
_warn("Shouldn't get here; command="+hex(command)) | |
elif (first_byte == 0xFF): # It's a Meta-Event! ################## | |
#[command, length, remainder] = | |
# unpack("xCwa*", substr(trackdata, $Pointer, 6)); | |
#Pointer += 6 - len(remainder); | |
# # Move past JUST the length-encoded. | |
command = trackdata.pop(0) & 0xFF | |
[length, trackdata] = _unshift_ber_int(trackdata) | |
if (command == 0x00): | |
if (length == 2): | |
E = ['set_sequence_number',time,_twobytes2int(trackdata)] | |
else: | |
_warn('set_sequence_number: length must be 2, not '+str(length)) | |
E = ['set_sequence_number', time, 0] | |
elif command >= 0x01 and command <= 0x0f: # Text events | |
# 6.2 take it in bytes; let the user get the right encoding. | |
# text_str = trackdata[0:length].decode('ascii','ignore') | |
# text_str = trackdata[0:length].decode('ISO-8859-1') | |
# 6.4 take it in bytes; let the user get the right encoding. | |
text_data = bytes(trackdata[0:length]) # 6.4 | |
# Defined text events | |
if (command == 0x01): | |
E = ['text_event', time, text_data] | |
elif (command == 0x02): | |
E = ['copyright_text_event', time, text_data] | |
elif (command == 0x03): | |
E = ['track_name', time, text_data] | |
elif (command == 0x04): | |
E = ['instrument_name', time, text_data] | |
elif (command == 0x05): | |
E = ['lyric', time, text_data] | |
elif (command == 0x06): | |
E = ['marker', time, text_data] | |
elif (command == 0x07): | |
E = ['cue_point', time, text_data] | |
# Reserved but apparently unassigned text events | |
elif (command == 0x08): | |
E = ['text_event_08', time, text_data] | |
elif (command == 0x09): | |
E = ['text_event_09', time, text_data] | |
elif (command == 0x0a): | |
E = ['text_event_0a', time, text_data] | |
elif (command == 0x0b): | |
E = ['text_event_0b', time, text_data] | |
elif (command == 0x0c): | |
E = ['text_event_0c', time, text_data] | |
elif (command == 0x0d): | |
E = ['text_event_0d', time, text_data] | |
elif (command == 0x0e): | |
E = ['text_event_0e', time, text_data] | |
elif (command == 0x0f): | |
E = ['text_event_0f', time, text_data] | |
# Now the sticky events ------------------------------------- | |
elif (command == 0x2F): | |
E = ['end_track', time] | |
# The code for handling this, oddly, comes LATER, | |
# in the event registrar. | |
elif (command == 0x51): # DTime, Microseconds/Crochet | |
if length != 3: | |
_warn('set_tempo event, but length='+str(length)) | |
E = ['set_tempo', time, | |
struct.unpack(">I", b'\x00'+trackdata[0:3])[0]] | |
elif (command == 0x54): | |
if length != 5: # DTime, HR, MN, SE, FR, FF | |
_warn('smpte_offset event, but length='+str(length)) | |
E = ['smpte_offset',time] + list(struct.unpack(">BBBBB",trackdata[0:5])) | |
elif (command == 0x58): | |
if length != 4: # DTime, NN, DD, CC, BB | |
_warn('time_signature event, but length='+str(length)) | |
E = ['time_signature', time]+list(trackdata[0:4]) | |
elif (command == 0x59): | |
if length != 2: # DTime, SF(signed), MI | |
_warn('key_signature event, but length='+str(length)) | |
E = ['key_signature',time] + list(struct.unpack(">bB",trackdata[0:2])) | |
elif (command == 0x7F): # 6.4 | |
E = ['sequencer_specific',time, bytes(trackdata[0:length])] | |
else: | |
E = ['raw_meta_event', time, command, | |
bytes(trackdata[0:length])] # 6.0 | |
#"[uninterpretable meta-event command of length length]" | |
# DTime, Command, Binary Data | |
# It's uninterpretable; record it as raw_data. | |
# Pointer += length; # Now move Pointer | |
trackdata = trackdata[length:] | |
###################################################################### | |
elif (first_byte == 0xF0 or first_byte == 0xF7): | |
# Note that sysexes in MIDI /files/ are different than sysexes | |
# in MIDI transmissions!! The vast majority of system exclusive | |
# messages will just use the F0 format. For instance, the | |
# transmitted message F0 43 12 00 07 F7 would be stored in a | |
# MIDI file as F0 05 43 12 00 07 F7. As mentioned above, it is | |
# required to include the F7 at the end so that the reader of the | |
# MIDI file knows that it has read the entire message. (But the F7 | |
# is omitted if this is a non-final block in a multiblock sysex; | |
# but the F7 (if there) is counted in the message's declared | |
# length, so we don't have to think about it anyway.) | |
#command = trackdata.pop(0) | |
[length, trackdata] = _unshift_ber_int(trackdata) | |
if first_byte == 0xF0: | |
# 20091008 added ISO-8859-1 to get an 8-bit str | |
# 6.4 return bytes instead | |
E = ['sysex_f0', time, bytes(trackdata[0:length])] | |
else: | |
E = ['sysex_f7', time, bytes(trackdata[0:length])] | |
trackdata = trackdata[length:] | |
###################################################################### | |
# Now, the MIDI file spec says: | |
# <track data> = <MTrk event>+ | |
# <MTrk event> = <delta-time> <event> | |
# <event> = <MIDI event> | <sysex event> | <meta-event> | |
# I know that, on the wire, <MIDI event> can include note_on, | |
# note_off, and all the other 8x to Ex events, AND Fx events | |
# other than F0, F7, and FF -- namely, <song position msg>, | |
# <song select msg>, and <tune request>. | |
# | |
# Whether these can occur in MIDI files is not clear specified | |
# from the MIDI file spec. So, I'm going to assume that | |
# they CAN, in practice, occur. I don't know whether it's | |
# proper for you to actually emit these into a MIDI file. | |
elif (first_byte == 0xF2): # DTime, Beats | |
# <song position msg> ::= F2 <data pair> | |
E = ['song_position', time, _read_14_bit(trackdata[:2])] | |
trackdata = trackdata[2:] | |
elif (first_byte == 0xF3): # <song select msg> ::= F3 <data singlet> | |
# E = ['song_select', time, struct.unpack('>B',trackdata.pop(0))[0]] | |
E = ['song_select', time, trackdata[0]] | |
trackdata = trackdata[1:] | |
# DTime, Thing (what?! song number? whatever ...) | |
elif (first_byte == 0xF6): # DTime | |
E = ['tune_request', time] | |
# What would a tune request be doing in a MIDI /file/? | |
######################################################### | |
# ADD MORE META-EVENTS HERE. TODO: | |
# f1 -- MTC Quarter Frame Message. One data byte follows | |
# the Status; it's the time code value, from 0 to 127. | |
# f8 -- MIDI clock. no data. | |
# fa -- MIDI start. no data. | |
# fb -- MIDI continue. no data. | |
# fc -- MIDI stop. no data. | |
# fe -- Active sense. no data. | |
# f4 f5 f9 fd -- unallocated | |
r''' | |
elif (first_byte > 0xF0) { # Some unknown kinda F-series event #### | |
# Here we only produce a one-byte piece of raw data. | |
# But the encoder for 'raw_data' accepts any length of it. | |
E = [ 'raw_data', | |
time, substr(trackdata,Pointer,1) ] | |
# DTime and the Data (in this case, the one Event-byte) | |
++Pointer; # itself | |
''' | |
elif first_byte > 0xF0: # Some unknown F-series event | |
# Here we only produce a one-byte piece of raw data. | |
# E = ['raw_data', time, bytest(trackdata[0])] # 6.4 | |
E = ['raw_data', time, trackdata[0]] # 6.4 6.7 | |
trackdata = trackdata[1:] | |
else: # Fallthru. | |
_warn("Aborting track. Command-byte first_byte="+hex(first_byte)) | |
break | |
# End of the big if-group | |
###################################################################### | |
# THE EVENT REGISTRAR... | |
if E and (E[0] == 'end_track'): | |
# This is the code for exceptional handling of the EOT event. | |
eot = True | |
if not no_eot_magic: | |
if E[1] > 0: # a null text-event to carry the delta-time | |
E = ['text_event', E[1], ''] | |
else: | |
E = [] # EOT with a delta-time of 0; ignore it. | |
if E and not (E[0] in exclude): | |
#if ( $exclusive_event_callback ): | |
# &{ $exclusive_event_callback }( @E ); | |
#else: | |
# &{ $event_callback }( @E ) if $event_callback; | |
events.append(E) | |
if eot: | |
break | |
# End of the big "Event" while-block | |
return events | |
########################################################################### | |
def _encode(events_lol, unknown_callback=None, never_add_eot=False, | |
no_eot_magic=False, no_running_status=False, text_encoding='ISO-8859-1'): | |
# encode an event structure, presumably for writing to a file | |
# Calling format: | |
# $data_r = MIDI::Event::encode( \@event_lol, { options } ); | |
# Takes a REFERENCE to an event structure (a LoL) | |
# Returns an (unblessed) REFERENCE to track data. | |
# If you want to use this to encode a /single/ event, | |
# you still have to do it as a reference to an event structure (a LoL) | |
# that just happens to have just one event. I.e., | |
# encode( [ $event ] ) or encode( [ [ 'note_on', 100, 5, 42, 64] ] ) | |
# If you're doing this, consider the never_add_eot track option, as in | |
# print MIDI ${ encode( [ $event], { 'never_add_eot' => 1} ) }; | |
data = [] # what I'll store the chunks of byte-data in | |
# This is so my end_track magic won't corrupt the original | |
events = copy.deepcopy(events_lol) | |
if not never_add_eot: | |
# One way or another, tack on an 'end_track' | |
if events: | |
last = events[-1] | |
if not (last[0] == 'end_track'): # no end_track already | |
if (last[0] == 'text_event' and len(last[2]) == 0): | |
# 0-length text event at track-end. | |
if no_eot_magic: | |
# Exceptional case: don't mess with track-final | |
# 0-length text_events; just peg on an end_track | |
events.append(['end_track', 0]) | |
else: | |
# NORMAL CASE: replace with an end_track, leaving DTime | |
last[0] = 'end_track' | |
else: | |
# last event was neither 0-length text_event nor end_track | |
events.append(['end_track', 0]) | |
else: # an eventless track! | |
events = [['end_track', 0],] | |
# maybe_running_status = not no_running_status # unused? 4.7 | |
last_status = -1 | |
for event_r in (events): | |
E = copy.deepcopy(event_r) | |
# otherwise the shifting'd corrupt the original | |
if not E: | |
continue | |
event = E.pop(0) | |
if not len(event): | |
continue | |
dtime = int(E.pop(0)) | |
# print('event='+str(event)+' dtime='+str(dtime)) | |
event_data = '' | |
if ( # MIDI events -- eligible for running status | |
event == 'note_on' | |
or event == 'note_off' | |
or event == 'control_change' | |
or event == 'key_after_touch' | |
or event == 'patch_change' | |
or event == 'channel_after_touch' | |
or event == 'pitch_wheel_change' ): | |
# This block is where we spend most of the time. Gotta be tight. | |
if (event == 'note_off'): | |
status = 0x80 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) | |
elif (event == 'note_on'): | |
status = 0x90 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) | |
elif (event == 'key_after_touch'): | |
status = 0xA0 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F) | |
elif (event == 'control_change'): | |
status = 0xB0 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>BB', int(E[1])&0xFF, int(E[2])&0xFF) | |
elif (event == 'patch_change'): | |
status = 0xC0 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>B', int(E[1]) & 0xFF) | |
elif (event == 'channel_after_touch'): | |
status = 0xD0 | (int(E[0]) & 0x0F) | |
parameters = struct.pack('>B', int(E[1]) & 0xFF) | |
elif (event == 'pitch_wheel_change'): | |
status = 0xE0 | (int(E[0]) & 0x0F) | |
parameters = _write_14_bit(int(E[1]) + 0x2000) | |
else: | |
_warn("BADASS FREAKOUT ERROR 31415!") | |
# And now the encoding | |
# w = BER compressed integer (not ASN.1 BER, see perlpacktut for | |
# details). Its bytes represent an unsigned integer in base 128, | |
# most significant digit first, with as few digits as possible. | |
# Bit eight (the high bit) is set on each byte except the last. | |
data.append(_ber_compressed_int(dtime)) | |
if (status != last_status) or no_running_status: | |
data.append(struct.pack('>B', status)) | |
data.append(parameters) | |
last_status = status | |
continue | |
else: | |
# Not a MIDI event. | |
# All the code in this block could be more efficient, | |
# but this is not where the code needs to be tight. | |
# print "zaz $event\n"; | |
last_status = -1 | |
if event == 'raw_meta_event': | |
event_data = _some_text_event(int(E[0]), E[1], text_encoding) | |
elif (event == 'set_sequence_number'): # 3.9 | |
event_data = b'\xFF\x00\x02'+_int2twobytes(E[0]) | |
# Text meta-events... | |
# a case for a dict, I think (pjb) ... | |
elif (event == 'text_event'): | |
event_data = _some_text_event(0x01, E[0], text_encoding) | |
elif (event == 'copyright_text_event'): | |
event_data = _some_text_event(0x02, E[0], text_encoding) | |
elif (event == 'track_name'): | |
event_data = _some_text_event(0x03, E[0], text_encoding) | |
elif (event == 'instrument_name'): | |
event_data = _some_text_event(0x04, E[0], text_encoding) | |
elif (event == 'lyric'): | |
event_data = _some_text_event(0x05, E[0], text_encoding) | |
elif (event == 'marker'): | |
event_data = _some_text_event(0x06, E[0], text_encoding) | |
elif (event == 'cue_point'): | |
event_data = _some_text_event(0x07, E[0], text_encoding) | |
elif (event == 'text_event_08'): | |
event_data = _some_text_event(0x08, E[0], text_encoding) | |
elif (event == 'text_event_09'): | |
event_data = _some_text_event(0x09, E[0], text_encoding) | |
elif (event == 'text_event_0a'): | |
event_data = _some_text_event(0x0A, E[0], text_encoding) | |
elif (event == 'text_event_0b'): | |
event_data = _some_text_event(0x0B, E[0], text_encoding) | |
elif (event == 'text_event_0c'): | |
event_data = _some_text_event(0x0C, E[0], text_encoding) | |
elif (event == 'text_event_0d'): | |
event_data = _some_text_event(0x0D, E[0], text_encoding) | |
elif (event == 'text_event_0e'): | |
event_data = _some_text_event(0x0E, E[0], text_encoding) | |
elif (event == 'text_event_0f'): | |
event_data = _some_text_event(0x0F, E[0], text_encoding) | |
# End of text meta-events | |
elif (event == 'end_track'): | |
event_data = b"\xFF\x2F\x00" | |
elif (event == 'set_tempo'): | |
#event_data = struct.pack(">BBwa*", 0xFF, 0x51, 3, | |
# substr( struct.pack('>I', E[0]), 1, 3)) | |
event_data = b'\xFF\x51\x03'+struct.pack('>I',E[0])[1:] | |
elif (event == 'smpte_offset'): | |
# event_data = struct.pack(">BBwBBBBB", 0xFF, 0x54, 5, E[0:5] ) | |
event_data = struct.pack(">BBBbBBBB", 0xFF,0x54,0x05,E[0],E[1],E[2],E[3],E[4]) | |
elif (event == 'time_signature'): | |
# event_data = struct.pack(">BBwBBBB", 0xFF, 0x58, 4, E[0:4] ) | |
event_data = struct.pack(">BBBbBBB", 0xFF, 0x58, 0x04, E[0],E[1],E[2],E[3]) | |
elif (event == 'key_signature'): | |
event_data = struct.pack(">BBBbB", 0xFF, 0x59, 0x02, E[0],E[1]) | |
elif (event == 'sequencer_specific'): | |
# event_data = struct.pack(">BBwa*", 0xFF,0x7F, len(E[0]), E[0]) | |
event_data = _some_text_event(0x7F, E[0], text_encoding) | |
# End of Meta-events | |
# Other Things... | |
elif (event == 'sysex_f0'): | |
#event_data = struct.pack(">Bwa*", 0xF0, len(E[0]), E[0]) | |
#B=bitstring w=BER-compressed-integer a=null-padded-ascii-str | |
event_data = bytearray(b'\xF0')+_ber_compressed_int(len(E[0]))+bytearray(E[0]) | |
elif (event == 'sysex_f7'): | |
#event_data = struct.pack(">Bwa*", 0xF7, len(E[0]), E[0]) | |
event_data = bytearray(b'\xF7')+_ber_compressed_int(len(E[0]))+bytearray(E[0]) | |
elif (event == 'song_position'): | |
event_data = b"\xF2" + _write_14_bit( E[0] ) | |
elif (event == 'song_select'): | |
event_data = struct.pack('>BB', 0xF3, E[0] ) | |
elif (event == 'tune_request'): | |
event_data = b"\xF6" | |
elif (event == 'raw_data'): | |
_warn("_encode: raw_data event not supported") | |
# event_data = E[0] | |
continue | |
# End of Other Stuff | |
else: | |
# The Big Fallthru | |
if unknown_callback: | |
# push(@data, &{ $unknown_callback }( @$event_r )) | |
pass | |
else: | |
_warn("Unknown event: "+str(event)) | |
# To surpress complaint here, just set | |
# 'unknown_callback' => sub { return () } | |
continue | |
#print "Event $event encoded part 2\n" | |
if str(type(event_data)).find("'str'") >= 0: | |
event_data = bytearray(event_data.encode('Latin1', 'ignore')) | |
if len(event_data): # how could $event_data be empty | |
# data.append(struct.pack('>wa*', dtime, event_data)) | |
# print(' event_data='+str(event_data)) | |
data.append(_ber_compressed_int(dtime)+event_data) | |
return b''.join(data) | |
################################################################################### | |
################################################################################### | |
################################################################################### | |
# | |
# Tegridy MIDI X Module (TMIDI X / tee-midi eks) | |
# Version 1.0 | |
# | |
# Based upon and includes the amazing MIDI.py module v.6.7. by Peter Billam | |
# pjb.com.au | |
# | |
# Project Los Angeles | |
# Tegridy Code 2021 | |
# https://github.com/Tegridy-Code/Project-Los-Angeles | |
# | |
################################################################################### | |
################################################################################### | |
################################################################################### | |
import os | |
import datetime | |
import copy | |
from datetime import datetime | |
import secrets | |
import random | |
import pickle | |
import csv | |
import tqdm | |
from itertools import zip_longest | |
from itertools import groupby | |
from collections import Counter | |
from operator import itemgetter | |
import sys | |
from abc import ABC, abstractmethod | |
from difflib import SequenceMatcher as SM | |
import statistics | |
import matplotlib.pyplot as plt | |
################################################################################### | |
# | |
# Original TMIDI Tegridy helper functions | |
# | |
################################################################################### | |
def Tegridy_TXT_to_INT_Converter(input_TXT_string, line_by_line_INT_string=True, max_INT = 0): | |
'''Tegridy TXT to Intergers Converter | |
Input: Input TXT string in the TMIDI-TXT format | |
Type of output TXT INT string: line-by-line or one long string | |
Maximum absolute integer to process. Maximum is inclusive | |
Default = process all integers. This helps to remove outliers/unwanted ints | |
Output: List of pure intergers | |
String of intergers in the specified format: line-by-line or one long string | |
Number of processed integers | |
Number of skipped integers | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Tegridy TXT to Intergers Converter') | |
output_INT_list = [] | |
npi = 0 | |
nsi = 0 | |
TXT_List = list(input_TXT_string) | |
for char in TXT_List: | |
if max_INT != 0: | |
if abs(ord(char)) <= max_INT: | |
output_INT_list.append(ord(char)) | |
npi += 1 | |
else: | |
nsi += 1 | |
else: | |
output_INT_list.append(ord(char)) | |
npi += 1 | |
if line_by_line_INT_string: | |
output_INT_string = '\n'.join([str(elem) for elem in output_INT_list]) | |
else: | |
output_INT_string = ' '.join([str(elem) for elem in output_INT_list]) | |
print('Converted TXT to INTs:', npi, ' / ', nsi) | |
return output_INT_list, output_INT_string, npi, nsi | |
################################################################################### | |
def Tegridy_INT_to_TXT_Converter(input_INT_list): | |
'''Tegridy Intergers to TXT Converter | |
Input: List of intergers in TMIDI-TXT-INT format | |
Output: Decoded TXT string in TMIDI-TXT format | |
Project Los Angeles | |
Tegridy Code 2020''' | |
output_TXT_string = '' | |
for i in input_INT_list: | |
output_TXT_string += chr(int(i)) | |
return output_TXT_string | |
################################################################################### | |
def Tegridy_INT_String_to_TXT_Converter(input_INT_String, line_by_line_input=True): | |
'''Tegridy Intergers String to TXT Converter | |
Input: List of intergers in TMIDI-TXT-INT-String format | |
Output: Decoded TXT string in TMIDI-TXT format | |
Project Los Angeles | |
Tegridy Code 2020''' | |
print('Tegridy Intergers String to TXT Converter') | |
if line_by_line_input: | |
input_string = input_INT_String.split('\n') | |
else: | |
input_string = input_INT_String.split(' ') | |
output_TXT_string = '' | |
for i in input_string: | |
try: | |
output_TXT_string += chr(abs(int(i))) | |
except: | |
print('Bad note:', i) | |
continue | |
print('Done!') | |
return output_TXT_string | |
################################################################################### | |
def Tegridy_SONG_to_MIDI_Converter(SONG, | |
output_signature = 'Tegridy TMIDI Module', | |
track_name = 'Composition Track', | |
number_of_ticks_per_quarter = 425, | |
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0], | |
output_file_name = 'TMIDI-Composition', | |
text_encoding='ISO-8859-1', | |
verbose=True): | |
'''Tegridy SONG to MIDI Converter | |
Input: Input SONG in TMIDI SONG/MIDI.py Score format | |
Output MIDI Track 0 name / MIDI Signature | |
Output MIDI Track 1 name / Composition track name | |
Number of ticks per quarter for the output MIDI | |
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches. | |
Output file name w/o .mid extension. | |
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. | |
Output: MIDI File | |
Detailed MIDI stats | |
Project Los Angeles | |
Tegridy Code 2020''' | |
if verbose: | |
print('Converting to MIDI. Please stand-by...') | |
output_header = [number_of_ticks_per_quarter, | |
[['track_name', 0, bytes(output_signature, text_encoding)]]] | |
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], | |
['patch_change', 0, 1, list_of_MIDI_patches[1]], | |
['patch_change', 0, 2, list_of_MIDI_patches[2]], | |
['patch_change', 0, 3, list_of_MIDI_patches[3]], | |
['patch_change', 0, 4, list_of_MIDI_patches[4]], | |
['patch_change', 0, 5, list_of_MIDI_patches[5]], | |
['patch_change', 0, 6, list_of_MIDI_patches[6]], | |
['patch_change', 0, 7, list_of_MIDI_patches[7]], | |
['patch_change', 0, 8, list_of_MIDI_patches[8]], | |
['patch_change', 0, 9, list_of_MIDI_patches[9]], | |
['patch_change', 0, 10, list_of_MIDI_patches[10]], | |
['patch_change', 0, 11, list_of_MIDI_patches[11]], | |
['patch_change', 0, 12, list_of_MIDI_patches[12]], | |
['patch_change', 0, 13, list_of_MIDI_patches[13]], | |
['patch_change', 0, 14, list_of_MIDI_patches[14]], | |
['patch_change', 0, 15, list_of_MIDI_patches[15]], | |
['track_name', 0, bytes(track_name, text_encoding)]] | |
output = output_header + [patch_list + SONG] | |
midi_data = score2midi(output, text_encoding) | |
detailed_MIDI_stats = score2stats(output) | |
with open(output_file_name + '.mid', 'wb') as midi_file: | |
midi_file.write(midi_data) | |
midi_file.close() | |
if verbose: | |
print('Done! Enjoy! :)') | |
return detailed_MIDI_stats | |
################################################################################### | |
def Tegridy_ms_SONG_to_MIDI_Converter(ms_SONG, | |
output_signature = 'Tegridy TMIDI Module', | |
track_name = 'Composition Track', | |
list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0], | |
output_file_name = 'TMIDI-Composition', | |
text_encoding='ISO-8859-1', | |
timings_multiplier=1, | |
verbose=True | |
): | |
'''Tegridy milisecond SONG to MIDI Converter | |
Input: Input ms SONG in TMIDI ms SONG/MIDI.py ms Score format | |
Output MIDI Track 0 name / MIDI Signature | |
Output MIDI Track 1 name / Composition track name | |
List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches. | |
Output file name w/o .mid extension. | |
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. | |
Optional timings multiplier | |
Optional verbose output | |
Output: MIDI File | |
Detailed MIDI stats | |
Project Los Angeles | |
Tegridy Code 2024''' | |
if verbose: | |
print('Converting to MIDI. Please stand-by...') | |
output_header = [1000, | |
[['set_tempo', 0, 1000000], | |
['time_signature', 0, 4, 2, 24, 8], | |
['track_name', 0, bytes(output_signature, text_encoding)]]] | |
patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], | |
['patch_change', 0, 1, list_of_MIDI_patches[1]], | |
['patch_change', 0, 2, list_of_MIDI_patches[2]], | |
['patch_change', 0, 3, list_of_MIDI_patches[3]], | |
['patch_change', 0, 4, list_of_MIDI_patches[4]], | |
['patch_change', 0, 5, list_of_MIDI_patches[5]], | |
['patch_change', 0, 6, list_of_MIDI_patches[6]], | |
['patch_change', 0, 7, list_of_MIDI_patches[7]], | |
['patch_change', 0, 8, list_of_MIDI_patches[8]], | |
['patch_change', 0, 9, list_of_MIDI_patches[9]], | |
['patch_change', 0, 10, list_of_MIDI_patches[10]], | |
['patch_change', 0, 11, list_of_MIDI_patches[11]], | |
['patch_change', 0, 12, list_of_MIDI_patches[12]], | |
['patch_change', 0, 13, list_of_MIDI_patches[13]], | |
['patch_change', 0, 14, list_of_MIDI_patches[14]], | |
['patch_change', 0, 15, list_of_MIDI_patches[15]], | |
['track_name', 0, bytes(track_name, text_encoding)]] | |
SONG = copy.deepcopy(ms_SONG) | |
if timings_multiplier != 1: | |
for S in SONG: | |
S[1] = S[1] * timings_multiplier | |
if S[0] == 'note': | |
S[2] = S[2] * timings_multiplier | |
output = output_header + [patch_list + SONG] | |
midi_data = score2midi(output, text_encoding) | |
detailed_MIDI_stats = score2stats(output) | |
with open(output_file_name + '.mid', 'wb') as midi_file: | |
midi_file.write(midi_data) | |
midi_file.close() | |
if verbose: | |
print('Done! Enjoy! :)') | |
return detailed_MIDI_stats | |
################################################################################### | |
def hsv_to_rgb(h, s, v): | |
if s == 0.0: | |
return v, v, v | |
i = int(h*6.0) | |
f = (h*6.0) - i | |
p = v*(1.0 - s) | |
q = v*(1.0 - s*f) | |
t = v*(1.0 - s*(1.0-f)) | |
i = i%6 | |
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i] | |
def generate_colors(n): | |
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)] | |
def add_arrays(a, b): | |
return [sum(pair) for pair in zip(a, b)] | |
#------------------------------------------------------------------------------- | |
def plot_ms_SONG(ms_song, | |
preview_length_in_notes=0, | |
block_lines_times_list = None, | |
plot_title='ms Song', | |
max_num_colors=129, | |
drums_color_num=128, | |
plot_size=(11,4), | |
note_height = 0.75, | |
show_grid_lines=False, | |
return_plt = False | |
): | |
'''Tegridy ms SONG plotter/vizualizer''' | |
notes = [s for s in ms_song if s[0] == 'note'] | |
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7): | |
print('The song notes do not have patches information') | |
print('Ploease add patches to the notes in the song') | |
else: | |
start_times = [s[1] / 1000 for s in notes] | |
durations = [s[2] / 1000 for s in notes] | |
pitches = [s[4] for s in notes] | |
patches = [s[6] for s in notes] | |
colors = generate_colors(max_num_colors) | |
colors[drums_color_num] = (1, 1, 1) | |
pbl = notes[preview_length_in_notes][1] / 1000 | |
fig, ax = plt.subplots(figsize=plot_size) | |
#fig, ax = plt.subplots() | |
# Create a rectangle for each note with color based on patch number | |
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches): | |
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch]) | |
ax.add_patch(rect) | |
# Set the limits of the plot | |
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))]) | |
ax.set_ylim([min(pitches)-1, max(pitches)+1]) | |
# Set the background color to black | |
ax.set_facecolor('black') | |
fig.patch.set_facecolor('white') | |
if preview_length_in_notes > 0: | |
ax.axvline(x=pbl, c='white') | |
if block_lines_times_list: | |
for bl in block_lines_times_list: | |
ax.axvline(x=bl, c='white') | |
if show_grid_lines: | |
ax.grid(color='white') | |
plt.xlabel('Time (s)', c='black') | |
plt.ylabel('MIDI Pitch', c='black') | |
plt.title(plot_title) | |
if return_plt: | |
return fig | |
plt.show() | |
################################################################################### | |
def Tegridy_SONG_to_Full_MIDI_Converter(SONG, | |
output_signature = 'Tegridy TMIDI Module', | |
track_name = 'Composition Track', | |
number_of_ticks_per_quarter = 1000, | |
output_file_name = 'TMIDI-Composition', | |
text_encoding='ISO-8859-1', | |
verbose=True): | |
'''Tegridy SONG to Full MIDI Converter | |
Input: Input SONG in Full TMIDI SONG/MIDI.py Score format | |
Output MIDI Track 0 name / MIDI Signature | |
Output MIDI Track 1 name / Composition track name | |
Number of ticks per quarter for the output MIDI | |
Output file name w/o .mid extension. | |
Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs. | |
Output: MIDI File | |
Detailed MIDI stats | |
Project Los Angeles | |
Tegridy Code 2023''' | |
if verbose: | |
print('Converting to MIDI. Please stand-by...') | |
output_header = [number_of_ticks_per_quarter, | |
[['set_tempo', 0, 1000000], | |
['track_name', 0, bytes(output_signature, text_encoding)]]] | |
song_track = [['track_name', 0, bytes(track_name, text_encoding)]] | |
output = output_header + [song_track + SONG] | |
midi_data = score2midi(output, text_encoding) | |
detailed_MIDI_stats = score2stats(output) | |
with open(output_file_name + '.mid', 'wb') as midi_file: | |
midi_file.write(midi_data) | |
midi_file.close() | |
if verbose: | |
print('Done! Enjoy! :)') | |
return detailed_MIDI_stats | |
################################################################################### | |
def Tegridy_File_Time_Stamp(input_file_name='File_Created_on_', ext = ''): | |
'''Tegridy File Time Stamp | |
Input: Full path and file name without extention | |
File extension | |
Output: File name string with time-stamp and extension (time-stamped file name) | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Time-stamping output file...') | |
now = '' | |
now_n = str(datetime.now()) | |
now_n = now_n.replace(' ', '_') | |
now_n = now_n.replace(':', '_') | |
now = now_n.replace('.', '_') | |
fname = input_file_name + str(now) + ext | |
return(fname) | |
################################################################################### | |
def Tegridy_Any_Pickle_File_Writer(Data, input_file_name='TMIDI_Pickle_File'): | |
'''Tegridy Pickle File Writer | |
Input: Data to write (I.e. a list) | |
Full path and file name without extention | |
Output: Named Pickle file | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Tegridy Pickle File Writer') | |
full_path_to_output_dataset_to = input_file_name + '.pickle' | |
if os.path.exists(full_path_to_output_dataset_to): | |
os.remove(full_path_to_output_dataset_to) | |
print('Removing old Dataset...') | |
else: | |
print("Creating new Dataset file...") | |
with open(full_path_to_output_dataset_to, 'wb') as filehandle: | |
# store the data as binary data stream | |
pickle.dump(Data, filehandle, protocol=pickle.HIGHEST_PROTOCOL) | |
print('Dataset was saved as:', full_path_to_output_dataset_to) | |
print('Task complete. Enjoy! :)') | |
################################################################################### | |
def Tegridy_Any_Pickle_File_Reader(input_file_name='TMIDI_Pickle_File', ext='.pickle'): | |
'''Tegridy Pickle File Loader | |
Input: Full path and file name without extention | |
File extension if different from default .pickle | |
Output: Standard Python 3 unpickled data object | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Tegridy Pickle File Loader') | |
print('Loading the pickle file. Please wait...') | |
with open(input_file_name + ext, 'rb') as pickle_file: | |
content = pickle.load(pickle_file) | |
return content | |
################################################################################### | |
# TMIDI X Code is below | |
################################################################################### | |
def Optimus_MIDI_TXT_Processor(MIDI_file, | |
line_by_line_output=True, | |
chordify_TXT=False, | |
dataset_MIDI_events_time_denominator=1, | |
output_velocity=True, | |
output_MIDI_channels = False, | |
MIDI_channel=0, | |
MIDI_patch=[0, 1], | |
char_offset = 30000, | |
transpose_by = 0, | |
flip=False, | |
melody_conditioned_encoding=False, | |
melody_pitch_baseline = 0, | |
number_of_notes_to_sample = -1, | |
sampling_offset_from_start = 0, | |
karaoke=False, | |
karaoke_language_encoding='utf-8', | |
song_name='Song', | |
perfect_timings=False, | |
musenet_encoding=False, | |
transform=0, | |
zero_token=False, | |
reset_timings=False): | |
'''Project Los Angeles | |
Tegridy Code 2021''' | |
########### | |
debug = False | |
ev = 0 | |
chords_list_final = [] | |
chords_list = [] | |
events_matrix = [] | |
melody = [] | |
melody1 = [] | |
itrack = 1 | |
min_note = 0 | |
max_note = 0 | |
ev = 0 | |
patch = 0 | |
score = [] | |
rec_event = [] | |
txt = '' | |
txtc = '' | |
chords = [] | |
melody_chords = [] | |
karaoke_events_matrix = [] | |
karaokez = [] | |
sample = 0 | |
start_sample = 0 | |
bass_melody = [] | |
INTS = [] | |
bints = 0 | |
########### | |
def list_average(num): | |
sum_num = 0 | |
for t in num: | |
sum_num = sum_num + t | |
avg = sum_num / len(num) | |
return avg | |
########### | |
#print('Loading MIDI file...') | |
midi_file = open(MIDI_file, 'rb') | |
if debug: print('Processing File:', file_address) | |
try: | |
opus = midi2opus(midi_file.read()) | |
except: | |
print('Problematic MIDI. Skipping...') | |
print('File name:', MIDI_file) | |
midi_file.close() | |
return txt, melody, chords | |
midi_file.close() | |
score1 = to_millisecs(opus) | |
score2 = opus2score(score1) | |
# score2 = opus2score(opus) # TODO Improve score timings when it will be possible. | |
if MIDI_channel == 16: # Process all MIDI channels | |
score = score2 | |
if MIDI_channel >= 0 and MIDI_channel <= 15: # Process only a selected single MIDI channel | |
score = grep(score2, [MIDI_channel]) | |
if MIDI_channel == -1: # Process all channels except drums (except channel 9) | |
score = grep(score2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15]) | |
#print('Reading all MIDI events from the MIDI file...') | |
while itrack < len(score): | |
for event in score[itrack]: | |
if perfect_timings: | |
if event[0] == 'note': | |
event[1] = round(event[1], -1) | |
event[2] = round(event[2], -1) | |
if event[0] == 'text_event' or event[0] == 'lyric' or event[0] == 'note': | |
if perfect_timings: | |
event[1] = round(event[1], -1) | |
karaokez.append(event) | |
if event[0] == 'text_event' or event[0] == 'lyric': | |
if perfect_timings: | |
event[1] = round(event[1], -1) | |
try: | |
event[2] = str(event[2].decode(karaoke_language_encoding, 'replace')).replace('/', '').replace(' ', '').replace('\\', '') | |
except: | |
event[2] = str(event[2]).replace('/', '').replace(' ', '').replace('\\', '') | |
continue | |
karaoke_events_matrix.append(event) | |
if event[0] == 'patch_change': | |
patch = event[3] | |
if event[0] == 'note' and patch in MIDI_patch: | |
if len(event) == 6: # Checking for bad notes... | |
eve = copy.deepcopy(event) | |
eve[1] = int(event[1] / dataset_MIDI_events_time_denominator) | |
eve[2] = int(event[2] / dataset_MIDI_events_time_denominator) | |
eve[4] = int(event[4] + transpose_by) | |
if flip == True: | |
eve[4] = int(127 - (event[4] + transpose_by)) | |
if number_of_notes_to_sample > -1: | |
if sample <= number_of_notes_to_sample: | |
if start_sample >= sampling_offset_from_start: | |
events_matrix.append(eve) | |
sample += 1 | |
ev += 1 | |
else: | |
start_sample += 1 | |
else: | |
events_matrix.append(eve) | |
ev += 1 | |
start_sample += 1 | |
itrack +=1 # Going to next track... | |
#print('Doing some heavy pythonic sorting...Please stand by...') | |
fn = os.path.basename(MIDI_file) | |
song_name = song_name.replace(' ', '_').replace('=', '_').replace('\'', '-') | |
if song_name == 'Song': | |
sng_name = fn.split('.')[0].replace(' ', '_').replace('=', '_').replace('\'', '-') | |
song_name = sng_name | |
# Zero token | |
if zero_token: | |
txt += chr(char_offset) + chr(char_offset) | |
if output_MIDI_channels: | |
txt += chr(char_offset) | |
if output_velocity: | |
txt += chr(char_offset) + chr(char_offset) | |
else: | |
txt += chr(char_offset) | |
txtc += chr(char_offset) + chr(char_offset) | |
if output_MIDI_channels: | |
txtc += chr(char_offset) | |
if output_velocity: | |
txtc += chr(char_offset) + chr(char_offset) | |
else: | |
txtc += chr(char_offset) | |
txt += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' | |
txtc += '=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' | |
else: | |
# Song stamp | |
txt += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' | |
txtc += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes' | |
if line_by_line_output: | |
txt += chr(10) | |
txtc += chr(10) | |
else: | |
txt += chr(32) | |
txtc += chr(32) | |
#print('Sorting input by start time...') | |
events_matrix.sort(key=lambda x: x[1]) # Sorting input by start time | |
#print('Timings converter') | |
if reset_timings: | |
ev_matrix = Tegridy_Timings_Converter(events_matrix)[0] | |
else: | |
ev_matrix = events_matrix | |
chords.extend(ev_matrix) | |
#print(chords) | |
#print('Extracting melody...') | |
melody_list = [] | |
#print('Grouping by start time. This will take a while...') | |
values = set(map(lambda x:x[1], ev_matrix)) # Non-multithreaded function version just in case | |
groups = [[y for y in ev_matrix if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes... | |
#print('Sorting events...') | |
for items in groups: | |
items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch | |
if melody_conditioned_encoding: items[0][3] = 0 # Melody should always bear MIDI Channel 0 for code to work | |
melody_list.append(items[0]) # Creating final melody list | |
melody_chords.append(items) # Creating final chords list | |
bass_melody.append(items[-1]) # Creating final bass melody list | |
# [WIP] Melody-conditioned chords list | |
if melody_conditioned_encoding == True: | |
if not karaoke: | |
previous_event = copy.deepcopy(melody_chords[0][0]) | |
for ev in melody_chords: | |
hp = True | |
ev.sort(reverse=False, key=lambda x: x[4]) # Sorting chord events by pitch | |
for event in ev: | |
# Computing events details | |
start_time = int(abs(event[1] - previous_event[1])) | |
duration = int(previous_event[2]) | |
if hp == True: | |
if int(previous_event[4]) >= melody_pitch_baseline: | |
channel = int(0) | |
hp = False | |
else: | |
channel = int(previous_event[3]+1) | |
hp = False | |
else: | |
channel = int(previous_event[3]+1) | |
hp = False | |
pitch = int(previous_event[4]) | |
velocity = int(previous_event[5]) | |
# Writing INTergerS... | |
try: | |
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset]) | |
except: | |
bints += 1 | |
# Converting to TXT if possible... | |
try: | |
txtc += str(chr(start_time + char_offset)) | |
txtc += str(chr(duration + char_offset)) | |
txtc += str(chr(pitch + char_offset)) | |
if output_velocity: | |
txtc += str(chr(velocity + char_offset)) | |
if output_MIDI_channels: | |
txtc += str(chr(channel + char_offset)) | |
if line_by_line_output: | |
txtc += chr(10) | |
else: | |
txtc += chr(32) | |
previous_event = copy.deepcopy(event) | |
except: | |
# print('Problematic MIDI event! Skipping...') | |
continue | |
if not line_by_line_output: | |
txtc += chr(10) | |
txt = txtc | |
chords = melody_chords | |
# Default stuff (not melody-conditioned/not-karaoke) | |
else: | |
if not karaoke: | |
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) | |
mel_chords = [] | |
for mc in melody_chords: | |
mel_chords.extend(mc) | |
if transform != 0: | |
chords = Tegridy_Transform(mel_chords, transform) | |
else: | |
chords = mel_chords | |
# TXT Stuff | |
previous_event = copy.deepcopy(chords[0]) | |
for event in chords: | |
# Computing events details | |
start_time = int(abs(event[1] - previous_event[1])) | |
duration = int(previous_event[2]) | |
channel = int(previous_event[3]) | |
pitch = int(previous_event[4] + transpose_by) | |
if flip == True: | |
pitch = 127 - int(previous_event[4] + transpose_by) | |
velocity = int(previous_event[5]) | |
# Writing INTergerS... | |
try: | |
INTS.append([(start_time)+char_offset, (duration)+char_offset, channel+char_offset, pitch+char_offset, velocity+char_offset]) | |
except: | |
bints += 1 | |
# Converting to TXT if possible... | |
try: | |
txt += str(chr(start_time + char_offset)) | |
txt += str(chr(duration + char_offset)) | |
txt += str(chr(pitch + char_offset)) | |
if output_velocity: | |
txt += str(chr(velocity + char_offset)) | |
if output_MIDI_channels: | |
txt += str(chr(channel + char_offset)) | |
if chordify_TXT == True and int(event[1] - previous_event[1]) == 0: | |
txt += '' | |
else: | |
if line_by_line_output: | |
txt += chr(10) | |
else: | |
txt += chr(32) | |
previous_event = copy.deepcopy(event) | |
except: | |
# print('Problematic MIDI event. Skipping...') | |
continue | |
if not line_by_line_output: | |
txt += chr(10) | |
# Karaoke stuff | |
if karaoke: | |
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) | |
mel_chords = [] | |
for mc in melody_chords: | |
mel_chords.extend(mc) | |
if transform != 0: | |
chords = Tegridy_Transform(mel_chords, transform) | |
else: | |
chords = mel_chords | |
previous_event = copy.deepcopy(chords[0]) | |
for event in chords: | |
# Computing events details | |
start_time = int(abs(event[1] - previous_event[1])) | |
duration = int(previous_event[2]) | |
channel = int(previous_event[3]) | |
pitch = int(previous_event[4] + transpose_by) | |
velocity = int(previous_event[5]) | |
# Converting to TXT | |
txt += str(chr(start_time + char_offset)) | |
txt += str(chr(duration + char_offset)) | |
txt += str(chr(pitch + char_offset)) | |
txt += str(chr(velocity + char_offset)) | |
txt += str(chr(channel + char_offset)) | |
if start_time > 0: | |
for k in karaoke_events_matrix: | |
if event[1] == k[1]: | |
txt += str('=') | |
txt += str(k[2]) | |
break | |
if line_by_line_output: | |
txt += chr(10) | |
else: | |
txt += chr(32) | |
previous_event = copy.deepcopy(event) | |
if not line_by_line_output: | |
txt += chr(10) | |
# Final processing code... | |
# ======================================================================= | |
# Helper aux/backup function for Karaoke | |
karaokez.sort(reverse=False, key=lambda x: x[1]) | |
# MuseNet sorting | |
if musenet_encoding and not melody_conditioned_encoding and not karaoke: | |
chords.sort(key=lambda x: (x[1], x[3])) | |
# Final melody sort | |
melody_list.sort() | |
# auxs for future use | |
aux1 = [None] | |
aux2 = [None] | |
return txt, melody_list, chords, bass_melody, karaokez, INTS, aux1, aux2 # aux1 and aux2 are not used atm | |
################################################################################### | |
def Optimus_TXT_to_Notes_Converter(Optimus_TXT_String, | |
line_by_line_dataset = True, | |
has_velocities = True, | |
has_MIDI_channels = True, | |
dataset_MIDI_events_time_denominator = 1, | |
char_encoding_offset = 30000, | |
save_only_first_composition = True, | |
simulate_velocity=True, | |
karaoke=False, | |
zero_token=False): | |
'''Project Los Angeles | |
Tegridy Code 2020''' | |
print('Tegridy Optimus TXT to Notes Converter') | |
print('Converting TXT to Notes list...Please wait...') | |
song_name = '' | |
if line_by_line_dataset: | |
input_string = Optimus_TXT_String.split('\n') | |
else: | |
input_string = Optimus_TXT_String.split(' ') | |
if line_by_line_dataset: | |
name_string = Optimus_TXT_String.split('\n')[0].split('=') | |
else: | |
name_string = Optimus_TXT_String.split(' ')[0].split('=') | |
# Zero token | |
zt = '' | |
zt += chr(char_encoding_offset) + chr(char_encoding_offset) | |
if has_MIDI_channels: | |
zt += chr(char_encoding_offset) | |
if has_velocities: | |
zt += chr(char_encoding_offset) + chr(char_encoding_offset) | |
else: | |
zt += chr(char_encoding_offset) | |
if zero_token: | |
if name_string[0] == zt: | |
song_name = name_string[1] | |
else: | |
if name_string[0] == 'SONG': | |
song_name = name_string[1] | |
output_list = [] | |
st = 0 | |
for i in range(2, len(input_string)-1): | |
if save_only_first_composition: | |
if zero_token: | |
if input_string[i].split('=')[0] == zt: | |
song_name = name_string[1] | |
break | |
else: | |
if input_string[i].split('=')[0] == 'SONG': | |
song_name = name_string[1] | |
break | |
try: | |
istring = input_string[i] | |
if has_MIDI_channels == False: | |
step = 4 | |
if has_MIDI_channels == True: | |
step = 5 | |
if has_velocities == False: | |
step -= 1 | |
st += int(ord(istring[0]) - char_encoding_offset) * dataset_MIDI_events_time_denominator | |
if not karaoke: | |
for s in range(0, len(istring), step): | |
if has_MIDI_channels==True: | |
if step > 3 and len(istring) > 2: | |
out = [] | |
out.append('note') | |
out.append(st) # Start time | |
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration | |
if has_velocities: | |
out.append(int(ord(istring[s+4]) - char_encoding_offset)) # Channel | |
else: | |
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Channel | |
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch | |
if simulate_velocity: | |
if s == 0: | |
sim_vel = int(ord(istring[s+2]) - char_encoding_offset) | |
out.append(sim_vel) # Simulated Velocity (= highest note's pitch) | |
else: | |
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity | |
if has_MIDI_channels==False: | |
if step > 3 and len(istring) > 2: | |
out = [] | |
out.append('note') | |
out.append(st) # Start time | |
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration | |
out.append(0) # Channel | |
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch | |
if simulate_velocity: | |
if s == 0: | |
sim_vel = int(ord(istring[s+2]) - char_encoding_offset) | |
out.append(sim_vel) # Simulated Velocity (= highest note's pitch) | |
else: | |
out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity | |
if step == 3 and len(istring) > 2: | |
out = [] | |
out.append('note') | |
out.append(st) # Start time | |
out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration | |
out.append(0) # Channel | |
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch | |
out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Velocity = Pitch | |
output_list.append(out) | |
if karaoke: | |
try: | |
out = [] | |
out.append('note') | |
out.append(st) # Start time | |
out.append(int(ord(istring[1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration | |
out.append(int(ord(istring[4]) - char_encoding_offset)) # Channel | |
out.append(int(ord(istring[2]) - char_encoding_offset)) # Pitch | |
if simulate_velocity: | |
if s == 0: | |
sim_vel = int(ord(istring[2]) - char_encoding_offset) | |
out.append(sim_vel) # Simulated Velocity (= highest note's pitch) | |
else: | |
out.append(int(ord(istring[3]) - char_encoding_offset)) # Velocity | |
output_list.append(out) | |
out = [] | |
if istring.split('=')[1] != '': | |
out.append('lyric') | |
out.append(st) | |
out.append(istring.split('=')[1]) | |
output_list.append(out) | |
except: | |
continue | |
except: | |
print('Bad note string:', istring) | |
continue | |
# Simple error control just in case | |
S = [] | |
for x in output_list: | |
if len(x) == 6 or len(x) == 3: | |
S.append(x) | |
output_list.clear() | |
output_list = copy.deepcopy(S) | |
print('Task complete! Enjoy! :)') | |
return output_list, song_name | |
################################################################################### | |
def Optimus_Data2TXT_Converter(data, | |
dataset_time_denominator=1, | |
transpose_by = 0, | |
char_offset = 33, | |
line_by_line_output = True, | |
output_velocity = False, | |
output_MIDI_channels = False): | |
'''Input: data as a flat chords list of flat chords lists | |
Output: TXT string | |
INTs | |
Project Los Angeles | |
Tegridy Code 2021''' | |
txt = '' | |
TXT = '' | |
quit = False | |
counter = 0 | |
INTs = [] | |
INTs_f = [] | |
for d in tqdm.tqdm(sorted(data)): | |
if quit == True: | |
break | |
txt = 'SONG=' + str(counter) | |
counter += 1 | |
if line_by_line_output: | |
txt += chr(10) | |
else: | |
txt += chr(32) | |
INTs = [] | |
# TXT Stuff | |
previous_event = copy.deepcopy(d[0]) | |
for event in sorted(d): | |
# Computing events details | |
start_time = int(abs(event[1] - previous_event[1]) / dataset_time_denominator) | |
duration = int(previous_event[2] / dataset_time_denominator) | |
channel = int(previous_event[3]) | |
pitch = int(previous_event[4] + transpose_by) | |
velocity = int(previous_event[5]) | |
INTs.append([start_time, duration, pitch]) | |
# Converting to TXT if possible... | |
try: | |
txt += str(chr(start_time + char_offset)) | |
txt += str(chr(duration + char_offset)) | |
txt += str(chr(pitch + char_offset)) | |
if output_velocity: | |
txt += str(chr(velocity + char_offset)) | |
if output_MIDI_channels: | |
txt += str(chr(channel + char_offset)) | |
if line_by_line_output: | |
txt += chr(10) | |
else: | |
txt += chr(32) | |
previous_event = copy.deepcopy(event) | |
except KeyboardInterrupt: | |
quit = True | |
break | |
except: | |
print('Problematic MIDI data. Skipping...') | |
continue | |
if not line_by_line_output: | |
txt += chr(10) | |
TXT += txt | |
INTs_f.extend(INTs) | |
return TXT, INTs_f | |
################################################################################### | |
def Optimus_Squash(chords_list, simulate_velocity=True, mono_compression=False): | |
'''Input: Flat chords list | |
Simulate velocity or not | |
Mono-compression enabled or disabled | |
Default is almost lossless 25% compression, otherwise, lossy 50% compression (mono-compression) | |
Output: Squashed chords list | |
Resulting compression level | |
Please note that if drums are passed through as is | |
Project Los Angeles | |
Tegridy Code 2021''' | |
output = [] | |
ptime = 0 | |
vel = 0 | |
boost = 15 | |
stptc = [] | |
ocount = 0 | |
rcount = 0 | |
for c in chords_list: | |
cc = copy.deepcopy(c) | |
ocount += 1 | |
if [cc[1], cc[3], (cc[4] % 12) + 60] not in stptc: | |
stptc.append([cc[1], cc[3], (cc[4] % 12) + 60]) | |
if cc[3] != 9: | |
cc[4] = (c[4] % 12) + 60 | |
if simulate_velocity and c[1] != ptime: | |
vel = c[4] + boost | |
if cc[3] != 9: | |
cc[5] = vel | |
if mono_compression: | |
if c[1] != ptime: | |
output.append(cc) | |
rcount += 1 | |
else: | |
output.append(cc) | |
rcount += 1 | |
ptime = c[1] | |
output.sort(key=lambda x: (x[1], x[4])) | |
comp_level = 100 - int((rcount * 100) / ocount) | |
return output, comp_level | |
################################################################################### | |
def Optimus_Signature(chords_list, calculate_full_signature=False): | |
'''Optimus Signature | |
---In the name of the search for a perfect score slice signature--- | |
Input: Flat chords list to evaluate | |
Output: Full Optimus Signature as a list | |
Best/recommended Optimus Signature as a list | |
Project Los Angeles | |
Tegridy Code 2021''' | |
# Pitches | |
## StDev | |
if calculate_full_signature: | |
psd = statistics.stdev([int(y[4]) for y in chords_list]) | |
else: | |
psd = 0 | |
## Median | |
pmh = statistics.median_high([int(y[4]) for y in chords_list]) | |
pm = statistics.median([int(y[4]) for y in chords_list]) | |
pml = statistics.median_low([int(y[4]) for y in chords_list]) | |
## Mean | |
if calculate_full_signature: | |
phm = statistics.harmonic_mean([int(y[4]) for y in chords_list]) | |
else: | |
phm = 0 | |
# Durations | |
dur = statistics.median([int(y[2]) for y in chords_list]) | |
# Velocities | |
vel = statistics.median([int(y[5]) for y in chords_list]) | |
# Beats | |
mtds = statistics.median([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))]) | |
if calculate_full_signature: | |
hmtds = statistics.harmonic_mean([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))]) | |
else: | |
hmtds = 0 | |
# Final Optimus signatures | |
full_Optimus_signature = [round(psd), round(pmh), round(pm), round(pml), round(phm), round(dur), round(vel), round(mtds), round(hmtds)] | |
######################## PStDev PMedianH PMedian PMedianL PHarmoMe Duration Velocity Beat HarmoBeat | |
best_Optimus_signature = [round(pmh), round(pm), round(pml), round(dur, -1), round(vel, -1), round(mtds, -1)] | |
######################## PMedianH PMedian PMedianL Duration Velocity Beat | |
# Return... | |
return full_Optimus_signature, best_Optimus_signature | |
################################################################################### | |
# | |
# TMIDI 2.0 Helper functions | |
# | |
################################################################################### | |
def Tegridy_FastSearch(needle, haystack, randomize = False): | |
''' | |
Input: Needle iterable | |
Haystack iterable | |
Randomize search range (this prevents determinism) | |
Output: Start index of the needle iterable in a haystack iterable | |
If nothing found, -1 is returned | |
Project Los Angeles | |
Tegridy Code 2021''' | |
need = copy.deepcopy(needle) | |
try: | |
if randomize: | |
idx = haystack.index(need, secrets.randbelow(len(haystack)-len(need))) | |
else: | |
idx = haystack.index(need) | |
except KeyboardInterrupt: | |
return -1 | |
except: | |
return -1 | |
return idx | |
################################################################################### | |
def Tegridy_Chord_Match(chord1, chord2, match_type=2): | |
'''Tegridy Chord Match | |
Input: Two chords to evaluate | |
Match type: 2 = duration, channel, pitch, velocity | |
3 = channel, pitch, velocity | |
4 = pitch, velocity | |
5 = velocity | |
Output: Match rating (0-100) | |
NOTE: Match rating == -1 means identical source chords | |
NOTE: Match rating == 100 means mutual shortest chord | |
Project Los Angeles | |
Tegridy Code 2021''' | |
match_rating = 0 | |
if chord1 == []: | |
return 0 | |
if chord2 == []: | |
return 0 | |
if chord1 == chord2: | |
return -1 | |
else: | |
zipped_pairs = list(zip(chord1, chord2)) | |
zipped_diff = abs(len(chord1) - len(chord2)) | |
short_match = [False] | |
for pair in zipped_pairs: | |
cho1 = ' '.join([str(y) for y in pair[0][match_type:]]) | |
cho2 = ' '.join([str(y) for y in pair[1][match_type:]]) | |
if cho1 == cho2: | |
short_match.append(True) | |
else: | |
short_match.append(False) | |
if True in short_match: | |
return 100 | |
pairs_ratings = [] | |
for pair in zipped_pairs: | |
cho1 = ' '.join([str(y) for y in pair[0][match_type:]]) | |
cho2 = ' '.join([str(y) for y in pair[1][match_type:]]) | |
pairs_ratings.append(SM(None, cho1, cho2).ratio()) | |
match_rating = sum(pairs_ratings) / len(pairs_ratings) * 100 | |
return match_rating | |
################################################################################### | |
def Tegridy_Last_Chord_Finder(chords_list): | |
'''Tegridy Last Chord Finder | |
Input: Flat chords list | |
Output: Last detected chord of the chords list | |
Last chord start index in the original chords list | |
First chord end index in the original chords list | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords = [] | |
cho = [] | |
ptime = 0 | |
i = 0 | |
pc_idx = 0 | |
fc_idx = 0 | |
chords_list.sort(reverse=False, key=lambda x: x[1]) | |
for cc in chords_list: | |
if cc[1] == ptime: | |
cho.append(cc) | |
ptime = cc[1] | |
else: | |
if pc_idx == 0: | |
fc_idx = chords_list.index(cc) | |
pc_idx = chords_list.index(cc) | |
chords.append(cho) | |
cho = [] | |
cho.append(cc) | |
ptime = cc[1] | |
i += 1 | |
if cho != []: | |
chords.append(cho) | |
i += 1 | |
return chords_list[pc_idx:], pc_idx, fc_idx | |
################################################################################### | |
def Tegridy_Chords_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False): | |
'''Tegridy Score Chords Pairs Generator | |
Input: Flat chords list | |
Shuffle pairs (recommended) | |
Output: List of chords | |
Average time(ms) per chord | |
Average time(ms) per pitch | |
Average chords delta time | |
Average duration | |
Average channel | |
Average pitch | |
Average velocity | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords = [] | |
cho = [] | |
i = 0 | |
# Sort by start time | |
chords_list.sort(reverse=False, key=lambda x: x[1]) | |
# Main loop | |
pcho = chords_list[0] | |
for cc in chords_list: | |
if cc[1] == pcho[1]: | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
else: | |
if not remove_single_notes: | |
chords.append(cho) | |
cho = [] | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
i += 1 | |
else: | |
if len(cho) > 1: | |
chords.append(cho) | |
cho = [] | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
i += 1 | |
# Averages | |
t0 = chords[0][0][1] | |
t1 = chords[-1][-1][1] | |
tdel = abs(t1 - t0) | |
avg_ms_per_chord = int(tdel / i) | |
avg_ms_per_pitch = int(tdel / len(chords_list)) | |
# Delta time | |
tds = [int(abs(chords_list[i-1][1]-chords_list[i][1]) / 1) for i in range(1, len(chords_list))] | |
if len(tds) != 0: avg_delta_time = int(sum(tds) / len(tds)) | |
# Chords list attributes | |
p = int(sum([int(y[4]) for y in chords_list]) / len(chords_list)) | |
d = int(sum([int(y[2]) for y in chords_list]) / len(chords_list)) | |
c = int(sum([int(y[3]) for y in chords_list]) / len(chords_list)) | |
v = int(sum([int(y[5]) for y in chords_list]) / len(chords_list)) | |
# Final shuffle | |
if shuffle_pairs: | |
random.shuffle(chords) | |
return chords, [avg_ms_per_chord, avg_ms_per_pitch, avg_delta_time], [d, c, p, v] | |
################################################################################### | |
def Tegridy_Chords_List_Music_Features(chords_list, st_dur_div = 1, pitch_div = 1, vel_div = 1): | |
'''Tegridy Chords List Music Features | |
Input: Flat chords list | |
Output: A list of the extracted chords list's music features | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords_list1 = [x for x in chords_list if x] | |
chords_list1.sort(reverse=False, key=lambda x: x[1]) | |
# Features extraction code | |
melody_list = [] | |
bass_melody = [] | |
melody_chords = [] | |
mel_avg_tds = [] | |
mel_chrd_avg_tds = [] | |
bass_melody_avg_tds = [] | |
#print('Grouping by start time. This will take a while...') | |
values = set(map(lambda x:x[1], chords_list1)) # Non-multithreaded function version just in case | |
groups = [[y for y in chords_list1 if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes... | |
#print('Sorting events...') | |
for items in groups: | |
items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch | |
melody_list.append(items[0]) # Creating final melody list | |
melody_chords.append(items) # Creating final chords list | |
bass_melody.append(items[-1]) # Creating final bass melody list | |
#print('Final sorting by start time...') | |
melody_list.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time | |
melody_chords.sort(reverse=False, key=lambda x: x[0][1]) # Sorting events by start time | |
bass_melody.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time | |
# Extracting music features from the chords list | |
# Melody features | |
mel_avg_pitch = int(sum([y[4] for y in melody_list]) / len(melody_list) / pitch_div) | |
mel_avg_dur = int(sum([int(y[2] / st_dur_div) for y in melody_list]) / len(melody_list)) | |
mel_avg_vel = int(sum([int(y[5] / vel_div) for y in melody_list]) / len(melody_list)) | |
mel_avg_chan = int(sum([int(y[3]) for y in melody_list]) / len(melody_list)) | |
mel_tds = [int(abs(melody_list[i-1][1]-melody_list[i][1])) for i in range(1, len(melody_list))] | |
if len(mel_tds) != 0: mel_avg_tds = int(sum(mel_tds) / len(mel_tds) / st_dur_div) | |
melody_features = [mel_avg_tds, mel_avg_dur, mel_avg_chan, mel_avg_pitch, mel_avg_vel] | |
# Chords list features | |
mel_chrd_avg_pitch = int(sum([y[4] for y in chords_list1]) / len(chords_list1) / pitch_div) | |
mel_chrd_avg_dur = int(sum([int(y[2] / st_dur_div) for y in chords_list1]) / len(chords_list1)) | |
mel_chrd_avg_vel = int(sum([int(y[5] / vel_div) for y in chords_list1]) / len(chords_list1)) | |
mel_chrd_avg_chan = int(sum([int(y[3]) for y in chords_list1]) / len(chords_list1)) | |
mel_chrd_tds = [int(abs(chords_list1[i-1][1]-chords_list1[i][1])) for i in range(1, len(chords_list1))] | |
if len(mel_tds) != 0: mel_chrd_avg_tds = int(sum(mel_chrd_tds) / len(mel_chrd_tds) / st_dur_div) | |
chords_list_features = [mel_chrd_avg_tds, mel_chrd_avg_dur, mel_chrd_avg_chan, mel_chrd_avg_pitch, mel_chrd_avg_vel] | |
# Bass melody features | |
bass_melody_avg_pitch = int(sum([y[4] for y in bass_melody]) / len(bass_melody) / pitch_div) | |
bass_melody_avg_dur = int(sum([int(y[2] / st_dur_div) for y in bass_melody]) / len(bass_melody)) | |
bass_melody_avg_vel = int(sum([int(y[5] / vel_div) for y in bass_melody]) / len(bass_melody)) | |
bass_melody_avg_chan = int(sum([int(y[3]) for y in bass_melody]) / len(bass_melody)) | |
bass_melody_tds = [int(abs(bass_melody[i-1][1]-bass_melody[i][1])) for i in range(1, len(bass_melody))] | |
if len(bass_melody_tds) != 0: bass_melody_avg_tds = int(sum(bass_melody_tds) / len(bass_melody_tds) / st_dur_div) | |
bass_melody_features = [bass_melody_avg_tds, bass_melody_avg_dur, bass_melody_avg_chan, bass_melody_avg_pitch, bass_melody_avg_vel] | |
# A list to return all features | |
music_features = [] | |
music_features.extend([len(chords_list1)]) # Count of the original chords list notes | |
music_features.extend(melody_features) # Extracted melody features | |
music_features.extend(chords_list_features) # Extracted chords list features | |
music_features.extend(bass_melody_features) # Extracted bass melody features | |
music_features.extend([sum([y[4] for y in chords_list1])]) # Sum of all pitches in the original chords list | |
return music_features | |
################################################################################### | |
def Tegridy_Transform(chords_list, to_pitch=60, to_velocity=-1): | |
'''Tegridy Transform | |
Input: Flat chords list | |
Desired average pitch (-1 == no change) | |
Desired average velocity (-1 == no change) | |
Output: Transformed flat chords list | |
Project Los Angeles | |
Tegridy Code 2021''' | |
transformed_chords_list = [] | |
chords_list.sort(reverse=False, key=lambda x: x[1]) | |
chords_list_features = Optimus_Signature(chords_list)[1] | |
pitch_diff = int((chords_list_features[0] + chords_list_features[1] + chords_list_features[2]) / 3) - to_pitch | |
velocity_diff = chords_list_features[4] - to_velocity | |
for c in chords_list: | |
cc = copy.deepcopy(c) | |
if c[3] != 9: # Except the drums | |
if to_pitch != -1: | |
cc[4] = c[4] - pitch_diff | |
if to_velocity != -1: | |
cc[5] = c[5] - velocity_diff | |
transformed_chords_list.append(cc) | |
return transformed_chords_list | |
################################################################################### | |
def Tegridy_MIDI_Zip_Notes_Summarizer(chords_list, match_type = 4): | |
'''Tegridy MIDI Zip Notes Summarizer | |
Input: Flat chords list / SONG | |
Match type according to 'note' event of MIDI.py | |
Output: Summarized chords list | |
Number of summarized notes | |
Number of dicarted notes | |
Project Los Angeles | |
Tegridy Code 2021''' | |
i = 0 | |
j = 0 | |
out1 = [] | |
pout = [] | |
for o in chords_list: | |
# MIDI Zip | |
if o[match_type:] not in pout: | |
pout.append(o[match_type:]) | |
out1.append(o) | |
j += 1 | |
else: | |
i += 1 | |
return out1, i | |
################################################################################### | |
def Tegridy_Score_Chords_Pairs_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False): | |
'''Tegridy Score Chords Pairs Generator | |
Input: Flat chords list | |
Shuffle pairs (recommended) | |
Output: Score chords pairs list | |
Number of created pairs | |
Number of detected chords | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords = [] | |
cho = [] | |
i = 0 | |
j = 0 | |
chords_list.sort(reverse=False, key=lambda x: x[1]) | |
pcho = chords_list[0] | |
for cc in chords_list: | |
if cc[1] == pcho[1]: | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
else: | |
if not remove_single_notes: | |
chords.append(cho) | |
cho = [] | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
i += 1 | |
else: | |
if len(cho) > 1: | |
chords.append(cho) | |
cho = [] | |
cho.append(cc) | |
pcho = copy.deepcopy(cc) | |
i += 1 | |
chords_pairs = [] | |
for i in range(len(chords)-1): | |
chords_pairs.append([chords[i], chords[i+1]]) | |
j += 1 | |
if shuffle_pairs: random.shuffle(chords_pairs) | |
return chords_pairs, j, i | |
################################################################################### | |
def Tegridy_Sliced_Score_Pairs_Generator(chords_list, number_of_miliseconds_per_slice=2000, shuffle_pairs = False): | |
'''Tegridy Sliced Score Pairs Generator | |
Input: Flat chords list | |
Number of miliseconds per slice | |
Output: Sliced score pairs list | |
Number of created slices | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords = [] | |
cho = [] | |
time = number_of_miliseconds_per_slice | |
i = 0 | |
chords_list1 = [x for x in chords_list if x] | |
chords_list1.sort(reverse=False, key=lambda x: x[1]) | |
pcho = chords_list1[0] | |
for cc in chords_list1[1:]: | |
if cc[1] <= time: | |
cho.append(cc) | |
else: | |
if cho != [] and pcho != []: chords.append([pcho, cho]) | |
pcho = copy.deepcopy(cho) | |
cho = [] | |
cho.append(cc) | |
time += number_of_miliseconds_per_slice | |
i += 1 | |
if cho != [] and pcho != []: | |
chords.append([pcho, cho]) | |
pcho = copy.deepcopy(cho) | |
i += 1 | |
if shuffle_pairs: random.shuffle(chords) | |
return chords, i | |
################################################################################### | |
def Tegridy_Timings_Converter(chords_list, | |
max_delta_time = 1000, | |
fixed_start_time = 250, | |
start_time = 0, | |
start_time_multiplier = 1, | |
durations_multiplier = 1): | |
'''Tegridy Timings Converter | |
Input: Flat chords list | |
Max delta time allowed between notes | |
Fixed start note time for excessive gaps | |
Output: Converted flat chords list | |
Project Los Angeles | |
Tegridy Code 2021''' | |
song = chords_list | |
song1 = [] | |
p = song[0] | |
p[1] = start_time | |
time = start_time | |
delta = [0] | |
for i in range(len(song)): | |
if song[i][0] == 'note': | |
ss = copy.deepcopy(song[i]) | |
if song[i][1] != p[1]: | |
if abs(song[i][1] - p[1]) > max_delta_time: | |
time += fixed_start_time | |
else: | |
time += abs(song[i][1] - p[1]) | |
delta.append(abs(song[i][1] - p[1])) | |
ss[1] = int(round(time * start_time_multiplier, -1)) | |
ss[2] = int(round(song[i][2] * durations_multiplier, -1)) | |
song1.append(ss) | |
p = copy.deepcopy(song[i]) | |
else: | |
ss[1] = int(round(time * start_time_multiplier, -1)) | |
ss[2] = int(round(song[i][2] * durations_multiplier, -1)) | |
song1.append(ss) | |
p = copy.deepcopy(song[i]) | |
else: | |
ss = copy.deepcopy(song[i]) | |
ss[1] = time | |
song1.append(ss) | |
average_delta_st = int(sum(delta) / len(delta)) | |
average_duration = int(sum([y[2] for y in song1 if y[0] == 'note']) / len([y[2] for y in song1 if y[0] == 'note'])) | |
song1.sort(reverse=False, key=lambda x: x[1]) | |
return song1, time, average_delta_st, average_duration | |
################################################################################### | |
def Tegridy_Score_Slicer(chords_list, number_of_miliseconds_per_slice=2000, overlap_notes = 0, overlap_chords=False): | |
'''Tegridy Score Slicer | |
Input: Flat chords list | |
Number of miliseconds per slice | |
Output: Sliced chords list | |
Number of created slices | |
Project Los Angeles | |
Tegridy Code 2021''' | |
chords = [] | |
cho = [] | |
time = number_of_miliseconds_per_slice | |
ptime = 0 | |
i = 0 | |
pc_idx = 0 | |
chords_list.sort(reverse=False, key=lambda x: x[1]) | |
for cc in chords_list: | |
if cc[1] <= time: | |
cho.append(cc) | |
if ptime != cc[1]: | |
pc_idx = cho.index(cc) | |
ptime = cc[1] | |
else: | |
if overlap_chords: | |
chords.append(cho) | |
cho.extend(chords[-1][pc_idx:]) | |
else: | |
chords.append(cho[:pc_idx]) | |
cho = [] | |
cho.append(cc) | |
time += number_of_miliseconds_per_slice | |
ptime = cc[1] | |
i += 1 | |
if cho != []: | |
chords.append(cho) | |
i += 1 | |
return [x for x in chords if x], i | |
################################################################################### | |
def Tegridy_TXT_Tokenizer(input_TXT_string, line_by_line_TXT_string=True): | |
'''Tegridy TXT Tokenizer | |
Input: TXT String | |
Output: Tokenized TXT string + forward and reverse dics | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Tegridy TXT Tokenizer') | |
if line_by_line_TXT_string: | |
T = input_TXT_string.split() | |
else: | |
T = input_TXT_string.split(' ') | |
DIC = dict(zip(T, range(len(T)))) | |
RDIC = dict(zip(range(len(T)), T)) | |
TXTT = '' | |
for t in T: | |
try: | |
TXTT += chr(DIC[t]) | |
except: | |
print('Error. Could not finish.') | |
return TXTT, DIC, RDIC | |
print('Done!') | |
return TXTT, DIC, RDIC | |
################################################################################### | |
def Tegridy_TXT_DeTokenizer(input_Tokenized_TXT_string, RDIC): | |
'''Tegridy TXT Tokenizer | |
Input: Tokenized TXT String | |
Output: DeTokenized TXT string | |
Project Los Angeles | |
Tegridy Code 2021''' | |
print('Tegridy TXT DeTokenizer') | |
Q = list(input_Tokenized_TXT_string) | |
c = 0 | |
RTXT = '' | |
for q in Q: | |
try: | |
RTXT += RDIC[ord(q)] + chr(10) | |
except: | |
c+=1 | |
print('Number of errors:', c) | |
print('Done!') | |
return RTXT | |
################################################################################### | |
def Tegridy_List_Slicer(input_list, slices_length_in_notes=20): | |
'''Input: List to slice | |
Desired slices length in notes | |
Output: Sliced list of lists | |
Project Los Angeles | |
Tegridy Code 2021''' | |
for i in range(0, len(input_list), slices_length_in_notes): | |
yield input_list[i:i + slices_length_in_notes] | |
################################################################################### | |
def Tegridy_Split_List(list_to_split, split_value=0): | |
# src courtesy of www.geeksforgeeks.org | |
# using list comprehension + zip() + slicing + enumerate() | |
# Split list into lists by particular value | |
size = len(list_to_split) | |
idx_list = [idx + 1 for idx, val in | |
enumerate(list_to_split) if val == split_value] | |
res = [list_to_split[i: j] for i, j in | |
zip([0] + idx_list, idx_list + | |
([size] if idx_list[-1] != size else []))] | |
# print result | |
# print("The list after splitting by a value : " + str(res)) | |
return res | |
################################################################################### | |
# Binary chords functions | |
def tones_chord_to_bits(chord): | |
bits = [0] * 12 | |
for num in chord: | |
bits[num] = 1 | |
return bits | |
def bits_to_tones_chord(bits): | |
return [i for i, bit in enumerate(bits) if bit == 1] | |
def shift_bits(bits, n): | |
return bits[-n:] + bits[:-n] | |
def bits_to_int(bits, shift_bits_value=0): | |
bits = shift_bits(bits, shift_bits_value) | |
result = 0 | |
for bit in bits: | |
result = (result << 1) | bit | |
return result | |
def int_to_bits(n): | |
bits = [0] * 12 | |
for i in range(12): | |
bits[11 - i] = n % 2 | |
n //= 2 | |
return bits | |
def bad_chord(chord): | |
bad = any(b - a == 1 for a, b in zip(chord, chord[1:])) | |
if (0 in chord) and (11 in chord): | |
bad = True | |
return bad | |
def pitches_chord_to_int(pitches_chord, tones_transpose_value=0): | |
pitches_chord = [x for x in pitches_chord if 0 < x < 128] | |
if not (-12 < tones_transpose_value < 12): | |
tones_transpose_value = 0 | |
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) | |
bits = tones_chord_to_bits(tones_chord) | |
integer = bits_to_int(bits, shift_bits_value=tones_transpose_value) | |
return integer | |
def int_to_pitches_chord(integer, chord_base_pitch=60): | |
if 0 < integer < 4096: | |
bits = int_to_bits(integer) | |
tones_chord = bits_to_tones_chord(bits) | |
if not bad_chord(tones_chord): | |
pitches_chord = [t+chord_base_pitch for t in tones_chord] | |
return [pitches_chord, tones_chord] | |
else: | |
return 0 # Bad chord code | |
else: | |
return -1 # Bad integer code | |
################################################################################### | |
def bad_chord(chord): | |
bad = any(b - a == 1 for a, b in zip(chord, chord[1:])) | |
if (0 in chord) and (11 in chord): | |
bad = True | |
return bad | |
def validate_pitches_chord(pitches_chord, return_sorted = True): | |
pitches_chord = sorted(list(set([x for x in pitches_chord if 0 < x < 128]))) | |
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) | |
if not bad_chord(tones_chord): | |
if return_sorted: | |
pitches_chord.sort(reverse=True) | |
return pitches_chord | |
else: | |
if 0 in tones_chord and 11 in tones_chord: | |
tones_chord.remove(0) | |
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] | |
fixed_tones_chord = [] | |
for f in fixed_tones: | |
fixed_tones_chord.extend(f) | |
fixed_tones_chord = list(set(fixed_tones_chord)) | |
fixed_pitches_chord = [] | |
for p in pitches_chord: | |
if (p % 12) in fixed_tones_chord: | |
fixed_pitches_chord.append(p) | |
if return_sorted: | |
fixed_pitches_chord.sort(reverse=True) | |
return fixed_pitches_chord | |
def validate_pitches(chord, channel_to_check = 0, return_sorted = True): | |
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check]))) | |
if pitches_chord: | |
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) | |
if not bad_chord(tones_chord): | |
if return_sorted: | |
chord.sort(key = lambda x: x[4], reverse=True) | |
return chord | |
else: | |
if 0 in tones_chord and 11 in tones_chord: | |
tones_chord.remove(0) | |
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] | |
fixed_tones_chord = [] | |
for f in fixed_tones: | |
fixed_tones_chord.extend(f) | |
fixed_tones_chord = list(set(fixed_tones_chord)) | |
fixed_chord = [] | |
for c in chord: | |
if c[3] == channel_to_check: | |
if (c[4] % 12) in fixed_tones_chord: | |
fixed_chord.append(c) | |
else: | |
fixed_chord.append(c) | |
if return_sorted: | |
fixed_chord.sort(key = lambda x: x[4], reverse=True) | |
return fixed_chord | |
else: | |
chord.sort(key = lambda x: x[4], reverse=True) | |
return chord | |
def adjust_score_velocities(score, max_velocity): | |
min_velocity = min([c[5] for c in score]) | |
max_velocity_all_channels = max([c[5] for c in score]) | |
min_velocity_ratio = min_velocity / max_velocity_all_channels | |
max_channel_velocity = max([c[5] for c in score]) | |
if max_channel_velocity < min_velocity: | |
factor = max_velocity / min_velocity | |
else: | |
factor = max_velocity / max_channel_velocity | |
for i in range(len(score)): | |
score[i][5] = int(score[i][5] * factor) | |
def chordify_score(score, | |
return_choridfied_score=True, | |
return_detected_score_information=False | |
): | |
if score: | |
num_tracks = 1 | |
single_track_score = [] | |
score_num_ticks = 0 | |
if type(score[0]) == int and len(score) > 1: | |
score_type = 'MIDI_PY' | |
score_num_ticks = score[0] | |
while num_tracks < len(score): | |
for event in score[num_tracks]: | |
single_track_score.append(event) | |
num_tracks += 1 | |
else: | |
score_type = 'CUSTOM' | |
single_track_score = score | |
if single_track_score and single_track_score[0]: | |
try: | |
if type(single_track_score[0][0]) == str or single_track_score[0][0] == 'note': | |
single_track_score.sort(key = lambda x: x[1]) | |
score_timings = [s[1] for s in single_track_score] | |
else: | |
score_timings = [s[0] for s in single_track_score] | |
is_score_time_absolute = lambda sct: all(x <= y for x, y in zip(sct, sct[1:])) | |
score_timings_type = '' | |
if is_score_time_absolute(score_timings): | |
score_timings_type = 'ABS' | |
chords = [] | |
cho = [] | |
if score_type == 'MIDI_PY': | |
pe = single_track_score[0] | |
else: | |
pe = single_track_score[0] | |
for e in single_track_score: | |
if score_type == 'MIDI_PY': | |
time = e[1] | |
ptime = pe[1] | |
else: | |
time = e[0] | |
ptime = pe[0] | |
if time == ptime: | |
cho.append(e) | |
else: | |
if len(cho) > 0: | |
chords.append(cho) | |
cho = [] | |
cho.append(e) | |
pe = e | |
if len(cho) > 0: | |
chords.append(cho) | |
else: | |
score_timings_type = 'REL' | |
chords = [] | |
cho = [] | |
for e in single_track_score: | |
if score_type == 'MIDI_PY': | |
time = e[1] | |
else: | |
time = e[0] | |
if time == 0: | |
cho.append(e) | |
else: | |
if len(cho) > 0: | |
chords.append(cho) | |
cho = [] | |
cho.append(e) | |
if len(cho) > 0: | |
chords.append(cho) | |
requested_data = [] | |
if return_detected_score_information: | |
detected_score_information = [] | |
detected_score_information.append(['Score type', score_type]) | |
detected_score_information.append(['Score timings type', score_timings_type]) | |
detected_score_information.append(['Score tpq', score_num_ticks]) | |
detected_score_information.append(['Score number of tracks', num_tracks]) | |
requested_data.append(detected_score_information) | |
if return_choridfied_score and return_detected_score_information: | |
requested_data.append(chords) | |
if return_choridfied_score and not return_detected_score_information: | |
requested_data.extend(chords) | |
return requested_data | |
except Exception as e: | |
print('Error!') | |
print('Check score for consistency and compatibility!') | |
print('Exception detected:', e) | |
else: | |
return None | |
else: | |
return None | |
def fix_monophonic_score_durations(monophonic_score): | |
fixed_score = [] | |
if monophonic_score[0][0] == 'note': | |
for i in range(len(monophonic_score)-1): | |
note = monophonic_score[i] | |
nmt = monophonic_score[i+1][1] | |
if note[1]+note[2] >= nmt: | |
note_dur = nmt-note[1]-1 | |
else: | |
note_dur = note[2] | |
new_note = [note[0], note[1], note_dur] + note[3:] | |
fixed_score.append(new_note) | |
fixed_score.append(monophonic_score[-1]) | |
elif type(monophonic_score[0][0]) == int: | |
for i in range(len(monophonic_score)-1): | |
note = monophonic_score[i] | |
nmt = monophonic_score[i+1][0] | |
if note[0]+note[1] >= nmt: | |
note_dur = nmt-note[0]-1 | |
else: | |
note_dur = note[1] | |
new_note = [note[0], note_dur] + note[2:] | |
fixed_score.append(new_note) | |
fixed_score.append(monophonic_score[-1]) | |
return fixed_score | |
################################################################################### | |
from itertools import product | |
ALL_CHORDS = [[0], [7], [5], [9], [2], [4], [11], [10], [8], [6], [3], [1], [0, 9], [2, 5], | |
[4, 7], [7, 10], [2, 11], [0, 3], [6, 9], [1, 4], [8, 11], [5, 8], [1, 10], | |
[3, 6], [0, 4], [5, 9], [7, 11], [0, 7], [0, 5], [2, 10], [2, 7], [2, 9], | |
[2, 6], [4, 11], [4, 9], [3, 7], [5, 10], [1, 9], [0, 8], [6, 11], [3, 11], | |
[4, 8], [3, 10], [3, 8], [1, 5], [1, 8], [1, 6], [6, 10], [3, 9], [4, 10], | |
[1, 7], [0, 6], [2, 8], [5, 11], [5, 7], [0, 10], [0, 2], [9, 11], [7, 9], | |
[2, 4], [4, 6], [3, 5], [8, 10], [6, 8], [1, 3], [1, 11], [2, 7, 11], | |
[0, 4, 7], [0, 5, 9], [2, 6, 9], [2, 5, 10], [1, 4, 9], [4, 8, 11], [3, 7, 10], | |
[0, 3, 8], [3, 6, 11], [1, 5, 8], [1, 6, 10], [0, 4, 9], [2, 5, 9], [4, 7, 11], | |
[2, 7, 10], [2, 6, 11], [0, 3, 7], [0, 5, 8], [1, 4, 8], [1, 6, 9], [3, 8, 11], | |
[1, 5, 10], [3, 6, 10], [2, 5, 11], [4, 7, 10], [3, 6, 9], [0, 6, 9], | |
[0, 3, 9], [2, 8, 11], [2, 5, 8], [1, 7, 10], [1, 4, 7], [0, 3, 6], [1, 4, 10], | |
[5, 8, 11], [2, 5, 7], [0, 7, 10], [0, 2, 9], [0, 3, 5], [6, 9, 11], [4, 7, 9], | |
[2, 4, 11], [5, 8, 10], [1, 3, 10], [1, 4, 6], [3, 6, 8], [1, 8, 11], | |
[5, 7, 11], [0, 4, 10], [3, 5, 9], [0, 2, 6], [1, 7, 9], [0, 7, 9], [5, 7, 10], | |
[2, 8, 10], [3, 9, 11], [0, 2, 5], [2, 4, 8], [2, 4, 7], [0, 2, 7], [2, 7, 9], | |
[4, 9, 11], [4, 6, 9], [1, 3, 7], [2, 4, 9], [0, 5, 7], [0, 3, 10], [2, 9, 11], | |
[0, 5, 10], [0, 6, 8], [4, 6, 10], [4, 6, 11], [1, 4, 11], [6, 8, 11], | |
[1, 5, 11], [1, 6, 11], [1, 8, 10], [1, 6, 8], [3, 5, 8], [3, 8, 10], | |
[1, 3, 8], [3, 5, 10], [1, 3, 6], [2, 5, 7, 10], [0, 3, 7, 10], [1, 4, 8, 11], | |
[2, 4, 7, 11], [0, 4, 7, 9], [0, 2, 5, 9], [2, 6, 9, 11], [1, 5, 8, 10], | |
[0, 3, 5, 8], [3, 6, 8, 11], [1, 3, 6, 10], [1, 4, 6, 9], [1, 5, 9], [0, 4, 8], | |
[2, 6, 10], [3, 7, 11], [0, 3, 6, 9], [2, 5, 8, 11], [1, 4, 7, 10], | |
[2, 5, 7, 11], [0, 2, 6, 9], [0, 4, 7, 10], [2, 4, 8, 11], [0, 3, 5, 9], | |
[1, 4, 7, 9], [3, 6, 9, 11], [2, 5, 8, 10], [1, 4, 6, 10], [0, 3, 6, 8], | |
[1, 3, 7, 10], [1, 5, 8, 11], [2, 4, 10], [5, 9, 11], [1, 5, 7], [0, 2, 8], | |
[0, 4, 6], [1, 7, 11], [3, 7, 9], [1, 3, 9], [7, 9, 11], [5, 7, 9], [0, 6, 10], | |
[0, 2, 10], [2, 6, 8], [0, 2, 4], [4, 8, 10], [1, 9, 11], [2, 4, 6], | |
[3, 5, 11], [3, 5, 7], [0, 8, 10], [4, 6, 8], [1, 3, 11], [6, 8, 10], | |
[1, 3, 5], [0, 2, 5, 10], [0, 5, 7, 9], [0, 3, 8, 10], [0, 2, 4, 7], | |
[4, 6, 8, 11], [3, 5, 7, 10], [2, 7, 9, 11], [2, 4, 6, 9], [1, 6, 8, 10], | |
[1, 4, 9, 11], [1, 3, 5, 8], [1, 3, 6, 11], [2, 5, 9, 11], [2, 4, 7, 10], | |
[0, 2, 5, 8], [1, 5, 7, 10], [0, 4, 6, 9], [1, 3, 6, 9], [0, 3, 6, 10], | |
[2, 6, 8, 11], [0, 2, 7, 9], [1, 4, 8, 10], [0, 3, 7, 9], [3, 5, 8, 11], | |
[0, 5, 7, 10], [0, 2, 5, 7], [1, 4, 7, 11], [2, 4, 7, 9], [0, 3, 5, 10], | |
[4, 6, 9, 11], [1, 4, 6, 11], [2, 4, 9, 11], [1, 6, 8, 11], [1, 3, 6, 8], | |
[1, 3, 8, 10], [3, 5, 8, 10], [4, 7, 9, 11], [0, 2, 7, 10], [2, 5, 7, 9], | |
[0, 2, 4, 9], [1, 6, 9, 11], [2, 4, 6, 11], [0, 3, 5, 7], [0, 5, 8, 10], | |
[1, 4, 6, 8], [1, 3, 5, 10], [1, 3, 8, 11], [3, 6, 8, 10], [0, 2, 5, 7, 10], | |
[0, 2, 4, 7, 9], [0, 2, 5, 7, 9], [1, 3, 7, 9], [1, 4, 6, 9, 11], | |
[1, 3, 6, 8, 11], [3, 5, 9, 11], [1, 3, 6, 8, 10], [1, 4, 6, 8, 11], | |
[1, 3, 5, 8, 10], [2, 4, 6, 9, 11], [2, 4, 8, 10], [2, 4, 7, 9, 11], | |
[0, 3, 5, 7, 10], [1, 5, 7, 11], [0, 2, 6, 8], [0, 3, 5, 8, 10], [0, 4, 6, 10], | |
[1, 3, 5, 9], [1, 5, 7, 9], [2, 6, 8, 10], [3, 7, 9, 11], [0, 2, 4, 8], | |
[0, 4, 6, 8], [0, 4, 8, 10], [2, 4, 6, 10], [1, 3, 7, 11], [0, 2, 6, 10], | |
[1, 5, 9, 11], [3, 5, 7, 11], [1, 7, 9, 11], [0, 2, 4, 6], [1, 3, 9, 11], | |
[0, 2, 4, 10], [5, 7, 9, 11], [2, 4, 6, 8], [0, 2, 8, 10], [3, 5, 7, 9], | |
[1, 3, 5, 7], [4, 6, 8, 10], [0, 6, 8, 10], [1, 3, 5, 11], [0, 3, 6, 8, 10], | |
[0, 2, 4, 6, 9], [1, 4, 7, 9, 11], [2, 4, 6, 8, 11], [1, 3, 6, 9, 11], | |
[1, 3, 5, 8, 11], [0, 2, 5, 8, 10], [1, 4, 6, 8, 10], [0, 3, 5, 7, 9], | |
[2, 5, 7, 9, 11], [1, 3, 5, 7, 10], [0, 2, 4, 7, 10], [1, 3, 5, 7, 9], | |
[1, 3, 5, 9, 11], [1, 5, 7, 9, 11], [1, 3, 7, 9, 11], [3, 5, 7, 9, 11], | |
[2, 4, 6, 8, 10], [0, 4, 6, 8, 10], [0, 2, 6, 8, 10], [1, 3, 5, 7, 11], | |
[0, 2, 4, 8, 10], [0, 2, 4, 6, 8], [0, 2, 4, 6, 10], [0, 2, 4, 6, 8, 10], | |
[1, 3, 5, 7, 9, 11]] | |
def find_exact_match_variable_length(list_of_lists, target_list, uncertain_indices): | |
# Infer possible values for each uncertain index | |
possible_values = {idx: set() for idx in uncertain_indices} | |
for sublist in list_of_lists: | |
for idx in uncertain_indices: | |
if idx < len(sublist): | |
possible_values[idx].add(sublist[idx]) | |
# Generate all possible combinations for the uncertain elements | |
uncertain_combinations = product(*(possible_values[idx] for idx in uncertain_indices)) | |
for combination in uncertain_combinations: | |
# Create a copy of the target list and update the uncertain elements | |
test_list = target_list[:] | |
for idx, value in zip(uncertain_indices, combination): | |
test_list[idx] = value | |
# Check if the modified target list is an exact match in the list of lists | |
# Only consider sublists that are at least as long as the target list | |
for sublist in list_of_lists: | |
if len(sublist) >= len(test_list) and sublist[:len(test_list)] == test_list: | |
return sublist # Return the matching sublist | |
return None # No exact match found | |
def advanced_validate_chord_pitches(chord, channel_to_check = 0, return_sorted = True): | |
pitches_chord = sorted(list(set([x[4] for x in chord if 0 < x[4] < 128 and x[3] == channel_to_check]))) | |
if pitches_chord: | |
tones_chord = sorted(list(set([c % 12 for c in sorted(list(set(pitches_chord)))]))) | |
if not bad_chord(tones_chord): | |
if return_sorted: | |
chord.sort(key = lambda x: x[4], reverse=True) | |
return chord | |
else: | |
bad_chord_indices = list(set([i for s in [[tones_chord.index(a), tones_chord.index(b)] for a, b in zip(tones_chord, tones_chord[1:]) if b-a == 1] for i in s])) | |
good_tones_chord = find_exact_match_variable_length(ALL_CHORDS, tones_chord, bad_chord_indices) | |
if good_tones_chord is not None: | |
fixed_chord = [] | |
for c in chord: | |
if c[3] == channel_to_check: | |
if (c[4] % 12) in good_tones_chord: | |
fixed_chord.append(c) | |
else: | |
fixed_chord.append(c) | |
if return_sorted: | |
fixed_chord.sort(key = lambda x: x[4], reverse=True) | |
else: | |
if 0 in tones_chord and 11 in tones_chord: | |
tones_chord.remove(0) | |
fixed_tones = [[a, b] for a, b in zip(tones_chord, tones_chord[1:]) if b-a != 1] | |
fixed_tones_chord = [] | |
for f in fixed_tones: | |
fixed_tones_chord.extend(f) | |
fixed_tones_chord = list(set(fixed_tones_chord)) | |
fixed_chord = [] | |
for c in chord: | |
if c[3] == channel_to_check: | |
if (c[4] % 12) in fixed_tones_chord: | |
fixed_chord.append(c) | |
else: | |
fixed_chord.append(c) | |
if return_sorted: | |
fixed_chord.sort(key = lambda x: x[4], reverse=True) | |
return fixed_chord | |
else: | |
chord.sort(key = lambda x: x[4], reverse=True) | |
return chord | |
################################################################################### | |
def analyze_score_pitches(score, channels_to_analyze=[0]): | |
analysis = {} | |
score_notes = [s for s in score if s[3] in channels_to_analyze] | |
cscore = chordify_score(score_notes) | |
chords_tones = [] | |
all_tones = [] | |
all_chords_good = True | |
bad_chords = [] | |
for c in cscore: | |
tones = sorted(list(set([t[4] % 12 for t in c]))) | |
chords_tones.append(tones) | |
all_tones.extend(tones) | |
if tones not in ALL_CHORDS: | |
all_chords_good = False | |
bad_chords.append(tones) | |
analysis['Number of notes'] = len(score_notes) | |
analysis['Number of chords'] = len(cscore) | |
analysis['Score tones'] = sorted(list(set(all_tones))) | |
analysis['Shortest chord'] = sorted(min(chords_tones, key=len)) | |
analysis['Longest chord'] = sorted(max(chords_tones, key=len)) | |
analysis['All chords good'] = all_chords_good | |
analysis['Bad chords'] = bad_chords | |
return analysis | |
################################################################################### | |
ALL_CHORDS_GROUPED = [[[0], [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]], | |
[[0, 2], [0, 3], [0, 4], [0, 5], [0, 6], [0, 7], [0, 8], [0, 9], [0, 10], | |
[1, 3], [1, 4], [1, 5], [1, 6], [1, 7], [1, 8], [1, 9], [1, 10], [1, 11], | |
[2, 4], [2, 5], [2, 6], [2, 7], [2, 8], [2, 9], [2, 10], [2, 11], [3, 5], | |
[3, 6], [3, 7], [3, 8], [3, 9], [3, 10], [3, 11], [4, 6], [4, 7], [4, 8], | |
[4, 9], [4, 10], [4, 11], [5, 7], [5, 8], [5, 9], [5, 10], [5, 11], [6, 8], | |
[6, 9], [6, 10], [6, 11], [7, 9], [7, 10], [7, 11], [8, 10], [8, 11], | |
[9, 11]], | |
[[0, 2, 4], [0, 2, 5], [0, 3, 5], [0, 2, 6], [0, 3, 6], [0, 4, 6], [0, 2, 7], | |
[0, 3, 7], [0, 4, 7], [0, 5, 7], [0, 2, 8], [0, 3, 8], [0, 4, 8], [0, 5, 8], | |
[0, 6, 8], [0, 2, 9], [0, 3, 9], [0, 4, 9], [0, 5, 9], [0, 6, 9], [0, 7, 9], | |
[0, 2, 10], [0, 3, 10], [0, 4, 10], [0, 5, 10], [0, 6, 10], [0, 7, 10], | |
[0, 8, 10], [1, 3, 5], [1, 3, 6], [1, 4, 6], [1, 3, 7], [1, 4, 7], [1, 5, 7], | |
[1, 3, 8], [1, 4, 8], [1, 5, 8], [1, 6, 8], [1, 3, 9], [1, 4, 9], [1, 5, 9], | |
[1, 6, 9], [1, 7, 9], [1, 3, 10], [1, 4, 10], [1, 5, 10], [1, 6, 10], | |
[1, 7, 10], [1, 8, 10], [1, 3, 11], [1, 4, 11], [1, 5, 11], [1, 6, 11], | |
[1, 7, 11], [1, 8, 11], [1, 9, 11], [2, 4, 6], [2, 4, 7], [2, 5, 7], | |
[2, 4, 8], [2, 5, 8], [2, 6, 8], [2, 4, 9], [2, 5, 9], [2, 6, 9], [2, 7, 9], | |
[2, 4, 10], [2, 5, 10], [2, 6, 10], [2, 7, 10], [2, 8, 10], [2, 4, 11], | |
[2, 5, 11], [2, 6, 11], [2, 7, 11], [2, 8, 11], [2, 9, 11], [3, 5, 7], | |
[3, 5, 8], [3, 6, 8], [3, 5, 9], [3, 6, 9], [3, 7, 9], [3, 5, 10], [3, 6, 10], | |
[3, 7, 10], [3, 8, 10], [3, 5, 11], [3, 6, 11], [3, 7, 11], [3, 8, 11], | |
[3, 9, 11], [4, 6, 8], [4, 6, 9], [4, 7, 9], [4, 6, 10], [4, 7, 10], | |
[4, 8, 10], [4, 6, 11], [4, 7, 11], [4, 8, 11], [4, 9, 11], [5, 7, 9], | |
[5, 7, 10], [5, 8, 10], [5, 7, 11], [5, 8, 11], [5, 9, 11], [6, 8, 10], | |
[6, 8, 11], [6, 9, 11], [7, 9, 11]], | |
[[0, 2, 4, 6], [0, 2, 4, 7], [0, 2, 5, 7], [0, 3, 5, 7], [0, 2, 4, 8], | |
[0, 2, 5, 8], [0, 2, 6, 8], [0, 3, 5, 8], [0, 3, 6, 8], [0, 4, 6, 8], | |
[0, 2, 4, 9], [0, 2, 5, 9], [0, 2, 6, 9], [0, 2, 7, 9], [0, 3, 5, 9], | |
[0, 3, 6, 9], [0, 3, 7, 9], [0, 4, 6, 9], [0, 4, 7, 9], [0, 5, 7, 9], | |
[0, 2, 4, 10], [0, 2, 5, 10], [0, 2, 6, 10], [0, 2, 7, 10], [0, 2, 8, 10], | |
[0, 3, 5, 10], [0, 3, 6, 10], [0, 3, 7, 10], [0, 3, 8, 10], [0, 4, 6, 10], | |
[0, 4, 7, 10], [0, 4, 8, 10], [0, 5, 7, 10], [0, 5, 8, 10], [0, 6, 8, 10], | |
[1, 3, 5, 7], [1, 3, 5, 8], [1, 3, 6, 8], [1, 4, 6, 8], [1, 3, 5, 9], | |
[1, 3, 6, 9], [1, 3, 7, 9], [1, 4, 6, 9], [1, 4, 7, 9], [1, 5, 7, 9], | |
[1, 3, 5, 10], [1, 3, 6, 10], [1, 3, 7, 10], [1, 3, 8, 10], [1, 4, 6, 10], | |
[1, 4, 7, 10], [1, 4, 8, 10], [1, 5, 7, 10], [1, 5, 8, 10], [1, 6, 8, 10], | |
[1, 3, 5, 11], [1, 3, 6, 11], [1, 3, 7, 11], [1, 3, 8, 11], [1, 3, 9, 11], | |
[1, 4, 6, 11], [1, 4, 7, 11], [1, 4, 8, 11], [1, 4, 9, 11], [1, 5, 7, 11], | |
[1, 5, 8, 11], [1, 5, 9, 11], [1, 6, 8, 11], [1, 6, 9, 11], [1, 7, 9, 11], | |
[2, 4, 6, 8], [2, 4, 6, 9], [2, 4, 7, 9], [2, 5, 7, 9], [2, 4, 6, 10], | |
[2, 4, 7, 10], [2, 4, 8, 10], [2, 5, 7, 10], [2, 5, 8, 10], [2, 6, 8, 10], | |
[2, 4, 6, 11], [2, 4, 7, 11], [2, 4, 8, 11], [2, 4, 9, 11], [2, 5, 7, 11], | |
[2, 5, 8, 11], [2, 5, 9, 11], [2, 6, 8, 11], [2, 6, 9, 11], [2, 7, 9, 11], | |
[3, 5, 7, 9], [3, 5, 7, 10], [3, 5, 8, 10], [3, 6, 8, 10], [3, 5, 7, 11], | |
[3, 5, 8, 11], [3, 5, 9, 11], [3, 6, 8, 11], [3, 6, 9, 11], [3, 7, 9, 11], | |
[4, 6, 8, 10], [4, 6, 8, 11], [4, 6, 9, 11], [4, 7, 9, 11], [5, 7, 9, 11]], | |
[[0, 2, 4, 6, 8], [0, 2, 4, 6, 9], [0, 2, 4, 7, 9], [0, 2, 5, 7, 9], | |
[0, 3, 5, 7, 9], [0, 2, 4, 6, 10], [0, 2, 4, 7, 10], [0, 2, 4, 8, 10], | |
[0, 2, 5, 7, 10], [0, 2, 5, 8, 10], [0, 2, 6, 8, 10], [0, 3, 5, 7, 10], | |
[0, 3, 5, 8, 10], [0, 3, 6, 8, 10], [0, 4, 6, 8, 10], [1, 3, 5, 7, 9], | |
[1, 3, 5, 7, 10], [1, 3, 5, 8, 10], [1, 3, 6, 8, 10], [1, 4, 6, 8, 10], | |
[1, 3, 5, 7, 11], [1, 3, 5, 8, 11], [1, 3, 5, 9, 11], [1, 3, 6, 8, 11], | |
[1, 3, 6, 9, 11], [1, 3, 7, 9, 11], [1, 4, 6, 8, 11], [1, 4, 6, 9, 11], | |
[1, 4, 7, 9, 11], [1, 5, 7, 9, 11], [2, 4, 6, 8, 10], [2, 4, 6, 8, 11], | |
[2, 4, 6, 9, 11], [2, 4, 7, 9, 11], [2, 5, 7, 9, 11], [3, 5, 7, 9, 11]], | |
[[0, 2, 4, 6, 8, 10], [1, 3, 5, 7, 9, 11]]] | |
def group_sublists_by_length(lst): | |
unique_lengths = sorted(list(set(map(len, lst))), reverse=True) | |
return [[x for x in lst if len(x) == i] for i in unique_lengths] | |
def pitches_to_tones_chord(pitches): | |
return sorted(set([p % 12 for p in pitches])) | |
def tones_chord_to_pitches(tones_chord, base_pitch=60): | |
return [t+base_pitch for t in tones_chord if 0 <= t < 12] | |
################################################################################### | |
def advanced_score_processor(raw_score, | |
patches_to_analyze=list(range(129)), | |
return_score_analysis=False, | |
return_enhanced_score=False, | |
return_enhanced_score_notes=False, | |
return_enhanced_monophonic_melody=False, | |
return_chordified_enhanced_score=False, | |
return_chordified_enhanced_score_with_lyrics=False, | |
return_score_tones_chords=False, | |
return_text_and_lyric_events=False | |
): | |
'''TMIDIX Advanced Score Processor''' | |
# Score data types detection | |
if raw_score and type(raw_score) == list: | |
num_ticks = 0 | |
num_tracks = 1 | |
basic_single_track_score = [] | |
if type(raw_score[0]) != int: | |
if len(raw_score[0]) < 5 and type(raw_score[0][0]) != str: | |
return ['Check score for errors and compatibility!'] | |
else: | |
basic_single_track_score = copy.deepcopy(raw_score) | |
else: | |
num_ticks = raw_score[0] | |
while num_tracks < len(raw_score): | |
for event in raw_score[num_tracks]: | |
ev = copy.deepcopy(event) | |
basic_single_track_score.append(ev) | |
num_tracks += 1 | |
basic_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True) | |
basic_single_track_score.sort(key=lambda x: x[1]) | |
enhanced_single_track_score = [] | |
patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] | |
all_score_patches = [] | |
num_patch_changes = 0 | |
for event in basic_single_track_score: | |
if event[0] == 'patch_change': | |
patches[event[2]] = event[3] | |
enhanced_single_track_score.append(event) | |
num_patch_changes += 1 | |
if event[0] == 'note': | |
if event[3] != 9: | |
event.extend([patches[event[3]]]) | |
all_score_patches.extend([patches[event[3]]]) | |
else: | |
event.extend([128]) | |
all_score_patches.extend([128]) | |
if enhanced_single_track_score: | |
if (event[1] == enhanced_single_track_score[-1][1]): | |
if ([event[3], event[4]] != enhanced_single_track_score[-1][3:5]): | |
enhanced_single_track_score.append(event) | |
else: | |
enhanced_single_track_score.append(event) | |
else: | |
enhanced_single_track_score.append(event) | |
if event[0] not in ['note', 'patch_change']: | |
enhanced_single_track_score.append(event) | |
enhanced_single_track_score.sort(key=lambda x: x[6] if x[0] == 'note' else -1) | |
enhanced_single_track_score.sort(key=lambda x: x[4] if x[0] == 'note' else 128, reverse=True) | |
enhanced_single_track_score.sort(key=lambda x: x[1]) | |
# Analysis and chordification | |
cscore = [] | |
cescore = [] | |
chords_tones = [] | |
tones_chords = [] | |
all_tones = [] | |
all_chords_good = True | |
bad_chords = [] | |
bad_chords_count = 0 | |
score_notes = [] | |
score_pitches = [] | |
score_patches = [] | |
num_text_events = 0 | |
num_lyric_events = 0 | |
num_other_events = 0 | |
text_and_lyric_events = [] | |
text_and_lyric_events_latin = None | |
analysis = {} | |
score_notes = [s for s in enhanced_single_track_score if s[0] == 'note' and s[6] in patches_to_analyze] | |
score_patches = [sn[6] for sn in score_notes] | |
if return_text_and_lyric_events: | |
text_and_lyric_events = [e for e in enhanced_single_track_score if e[0] in ['text_event', 'lyric']] | |
if text_and_lyric_events: | |
text_and_lyric_events_latin = True | |
for e in text_and_lyric_events: | |
try: | |
tle = str(e[2].decode()) | |
except: | |
tle = str(e[2]) | |
for c in tle: | |
if not 0 <= ord(c) < 128: | |
text_and_lyric_events_latin = False | |
if (return_chordified_enhanced_score or return_score_analysis) and any(elem in patches_to_analyze for elem in score_patches): | |
cescore = chordify_score([num_ticks, enhanced_single_track_score]) | |
if return_score_analysis: | |
cscore = chordify_score(score_notes) | |
score_pitches = [sn[4] for sn in score_notes] | |
text_events = [e for e in enhanced_single_track_score if e[0] == 'text_event'] | |
num_text_events = len(text_events) | |
lyric_events = [e for e in enhanced_single_track_score if e[0] == 'lyric'] | |
num_lyric_events = len(lyric_events) | |
other_events = [e for e in enhanced_single_track_score if e[0] not in ['note', 'patch_change', 'text_event', 'lyric']] | |
num_other_events = len(other_events) | |
for c in cscore: | |
tones = sorted(set([t[4] % 12 for t in c if t[3] != 9])) | |
if tones: | |
chords_tones.append(tones) | |
all_tones.extend(tones) | |
if tones not in ALL_CHORDS: | |
all_chords_good = False | |
bad_chords.append(tones) | |
bad_chords_count += 1 | |
analysis['Number of ticks per quarter note'] = num_ticks | |
analysis['Number of tracks'] = num_tracks | |
analysis['Number of all events'] = len(enhanced_single_track_score) | |
analysis['Number of patch change events'] = num_patch_changes | |
analysis['Number of text events'] = num_text_events | |
analysis['Number of lyric events'] = num_lyric_events | |
analysis['All text and lyric events Latin'] = text_and_lyric_events_latin | |
analysis['Number of other events'] = num_other_events | |
analysis['Number of score notes'] = len(score_notes) | |
analysis['Number of score chords'] = len(cscore) | |
analysis['Score patches'] = sorted(set(score_patches)) | |
analysis['Score pitches'] = sorted(set(score_pitches)) | |
analysis['Score tones'] = sorted(set(all_tones)) | |
if chords_tones: | |
analysis['Shortest chord'] = sorted(min(chords_tones, key=len)) | |
analysis['Longest chord'] = sorted(max(chords_tones, key=len)) | |
analysis['All chords good'] = all_chords_good | |
analysis['Number of bad chords'] = bad_chords_count | |
analysis['Bad chords'] = sorted([list(c) for c in set(tuple(bc) for bc in bad_chords)]) | |
else: | |
analysis['Error'] = 'Provided score does not have specified patches to analyse' | |
analysis['Provided patches to analyse'] = sorted(patches_to_analyze) | |
analysis['Patches present in the score'] = sorted(set(all_score_patches)) | |
if return_enhanced_monophonic_melody: | |
score_notes_copy = copy.deepcopy(score_notes) | |
chordified_score_notes = chordify_score(score_notes_copy) | |
melody = [c[0] for c in chordified_score_notes] | |
fixed_melody = [] | |
for i in range(len(melody)-1): | |
note = melody[i] | |
nmt = melody[i+1][1] | |
if note[1]+note[2] >= nmt: | |
note_dur = nmt-note[1]-1 | |
else: | |
note_dur = note[2] | |
melody[i][2] = note_dur | |
fixed_melody.append(melody[i]) | |
fixed_melody.append(melody[-1]) | |
if return_score_tones_chords: | |
cscore = chordify_score(score_notes) | |
for c in cscore: | |
tones_chord = sorted(set([t[4] % 12 for t in c if t[3] != 9])) | |
if tones_chord: | |
tones_chords.append(tones_chord) | |
if return_chordified_enhanced_score_with_lyrics: | |
score_with_lyrics = [e for e in enhanced_single_track_score if e[0] in ['note', 'text_event', 'lyric']] | |
chordified_enhanced_score_with_lyrics = chordify_score(score_with_lyrics) | |
# Returned data | |
requested_data = [] | |
if return_score_analysis and analysis: | |
requested_data.append([[k, v] for k, v in analysis.items()]) | |
if return_enhanced_score and enhanced_single_track_score: | |
requested_data.append([num_ticks, enhanced_single_track_score]) | |
if return_enhanced_score_notes and score_notes: | |
requested_data.append(score_notes) | |
if return_enhanced_monophonic_melody and fixed_melody: | |
requested_data.append(fixed_melody) | |
if return_chordified_enhanced_score and cescore: | |
requested_data.append(cescore) | |
if return_chordified_enhanced_score_with_lyrics and chordified_enhanced_score_with_lyrics: | |
requested_data.append(chordified_enhanced_score_with_lyrics) | |
if return_score_tones_chords and tones_chords: | |
requested_data.append(tones_chords) | |
if return_text_and_lyric_events and text_and_lyric_events: | |
requested_data.append(text_and_lyric_events) | |
return requested_data | |
else: | |
return ['Check score for errors and compatibility!'] | |
################################################################################### | |
import random | |
import copy | |
################################################################################### | |
def replace_bad_tones_chord(bad_tones_chord): | |
bad_chord_p = [0] * 12 | |
for b in bad_tones_chord: | |
bad_chord_p[b] = 1 | |
match_ratios = [] | |
good_chords = [] | |
for c in ALL_CHORDS: | |
good_chord_p = [0] * 12 | |
for cc in c: | |
good_chord_p[cc] = 1 | |
good_chords.append(good_chord_p) | |
match_ratios.append(sum(i == j for i, j in zip(good_chord_p, bad_chord_p)) / len(good_chord_p)) | |
best_good_chord = good_chords[match_ratios.index(max(match_ratios))] | |
replaced_chord = [] | |
for i in range(len(best_good_chord)): | |
if best_good_chord[i] == 1: | |
replaced_chord.append(i) | |
return [replaced_chord, max(match_ratios)] | |
################################################################################### | |
def check_and_fix_chord(chord, | |
channel_index=3, | |
pitch_index=4 | |
): | |
tones_chord = sorted(set([t[pitch_index] % 12 for t in chord if t[channel_index] != 9])) | |
notes_events = [t for t in chord if t[channel_index] != 9] | |
notes_events.sort(key=lambda x: x[pitch_index], reverse=True) | |
drums_events = [t for t in chord if t[channel_index] == 9] | |
checked_and_fixed_chord = [] | |
if tones_chord: | |
new_tones_chord = advanced_check_and_fix_tones_chord(tones_chord, high_pitch=notes_events[0][pitch_index]) | |
if new_tones_chord != tones_chord: | |
if len(notes_events) > 1: | |
checked_and_fixed_chord.extend([notes_events[0]]) | |
for cc in notes_events[1:]: | |
if cc[channel_index] != 9: | |
if (cc[pitch_index] % 12) in new_tones_chord: | |
checked_and_fixed_chord.extend([cc]) | |
checked_and_fixed_chord.extend(drums_events) | |
else: | |
checked_and_fixed_chord.extend([notes_events[0]]) | |
else: | |
checked_and_fixed_chord.extend(chord) | |
else: | |
checked_and_fixed_chord.extend(chord) | |
checked_and_fixed_chord.sort(key=lambda x: x[pitch_index], reverse=True) | |
return checked_and_fixed_chord | |
################################################################################### | |
def find_similar_tones_chord(tones_chord, | |
max_match_threshold=1, | |
randomize_chords_matches=False, | |
custom_chords_list=[]): | |
chord_p = [0] * 12 | |
for b in tones_chord: | |
chord_p[b] = 1 | |
match_ratios = [] | |
good_chords = [] | |
if custom_chords_list: | |
CHORDS = copy.deepcopy([list(x) for x in set(tuple(t) for t in custom_chords_list)]) | |
else: | |
CHORDS = copy.deepcopy(ALL_CHORDS) | |
if randomize_chords_matches: | |
random.shuffle(CHORDS) | |
for c in CHORDS: | |
good_chord_p = [0] * 12 | |
for cc in c: | |
good_chord_p[cc] = 1 | |
good_chords.append(good_chord_p) | |
match_ratio = sum(i == j for i, j in zip(good_chord_p, chord_p)) / len(good_chord_p) | |
if match_ratio < max_match_threshold: | |
match_ratios.append(match_ratio) | |
else: | |
match_ratios.append(0) | |
best_good_chord = good_chords[match_ratios.index(max(match_ratios))] | |
similar_chord = [] | |
for i in range(len(best_good_chord)): | |
if best_good_chord[i] == 1: | |
similar_chord.append(i) | |
return [similar_chord, max(match_ratios)] | |
################################################################################### | |
def generate_tones_chords_progression(number_of_chords_to_generate=100, | |
start_tones_chord=[], | |
custom_chords_list=[]): | |
if start_tones_chord: | |
start_chord = start_tones_chord | |
else: | |
start_chord = random.choice(ALL_CHORDS) | |
chord = [] | |
chords_progression = [start_chord] | |
for i in range(number_of_chords_to_generate): | |
if not chord: | |
chord = start_chord | |
if custom_chords_list: | |
chord = find_similar_tones_chord(chord, randomize_chords_matches=True, custom_chords_list=custom_chords_list)[0] | |
else: | |
chord = find_similar_tones_chord(chord, randomize_chords_matches=True)[0] | |
chords_progression.append(chord) | |
return chords_progression | |
################################################################################### | |
def ascii_texts_search(texts = ['text1', 'text2', 'text3'], | |
search_query = 'Once upon a time...', | |
deterministic_matching = False | |
): | |
texts_copy = texts | |
if not deterministic_matching: | |
texts_copy = copy.deepcopy(texts) | |
random.shuffle(texts_copy) | |
clean_texts = [] | |
for t in texts_copy: | |
text_words_list = [at.split(chr(32)) for at in t.split(chr(10))] | |
clean_text_words_list = [] | |
for twl in text_words_list: | |
for w in twl: | |
clean_text_words_list.append(''.join(filter(str.isalpha, w.lower()))) | |
clean_texts.append(clean_text_words_list) | |
text_search_query = [at.split(chr(32)) for at in search_query.split(chr(10))] | |
clean_text_search_query = [] | |
for w in text_search_query: | |
for ww in w: | |
clean_text_search_query.append(''.join(filter(str.isalpha, ww.lower()))) | |
if clean_texts[0] and clean_text_search_query: | |
texts_match_ratios = [] | |
words_match_indexes = [] | |
for t in clean_texts: | |
word_match_count = 0 | |
wmis = [] | |
for c in clean_text_search_query: | |
if c in t: | |
word_match_count += 1 | |
wmis.append(t.index(c)) | |
else: | |
wmis.append(-1) | |
words_match_indexes.append(wmis) | |
words_match_indexes_consequtive = all(abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:])) | |
words_match_indexes_consequtive_ratio = sum([abs(b) - abs(a) == 1 for a, b in zip(wmis, wmis[1:])]) / len(wmis) | |
if words_match_indexes_consequtive: | |
texts_match_ratios.append(word_match_count / len(clean_text_search_query)) | |
else: | |
texts_match_ratios.append(((word_match_count / len(clean_text_search_query)) + words_match_indexes_consequtive_ratio) / 2) | |
if texts_match_ratios: | |
max_text_match_ratio = max(texts_match_ratios) | |
max_match_ratio_text = texts_copy[texts_match_ratios.index(max_text_match_ratio)] | |
max_text_words_match_indexes = words_match_indexes[texts_match_ratios.index(max_text_match_ratio)] | |
return [max_match_ratio_text, max_text_match_ratio, max_text_words_match_indexes] | |
else: | |
return None | |
################################################################################### | |
def ascii_text_words_counter(ascii_text): | |
text_words_list = [at.split(chr(32)) for at in ascii_text.split(chr(10))] | |
clean_text_words_list = [] | |
for twl in text_words_list: | |
for w in twl: | |
wo = '' | |
for ww in w.lower(): | |
if 96 < ord(ww) < 123: | |
wo += ww | |
if wo != '': | |
clean_text_words_list.append(wo) | |
words = {} | |
for i in clean_text_words_list: | |
words[i] = words.get(i, 0) + 1 | |
words_sorted = dict(sorted(words.items(), key=lambda item: item[1], reverse=True)) | |
return len(clean_text_words_list), words_sorted, clean_text_words_list | |
################################################################################### | |
def check_and_fix_tones_chord(tones_chord): | |
lst = tones_chord | |
if len(lst) == 2: | |
if lst[1] - lst[0] == 1: | |
return [lst[-1]] | |
else: | |
if 0 in lst and 11 in lst: | |
lst.remove(0) | |
return lst | |
non_consecutive = [lst[0]] | |
if len(lst) > 2: | |
for i in range(1, len(lst) - 1): | |
if lst[i-1] + 1 != lst[i] and lst[i] + 1 != lst[i+1]: | |
non_consecutive.append(lst[i]) | |
non_consecutive.append(lst[-1]) | |
if 0 in non_consecutive and 11 in non_consecutive: | |
non_consecutive.remove(0) | |
return non_consecutive | |
################################################################################### | |
def find_closest_tone(tones, tone): | |
return min(tones, key=lambda x:abs(x-tone)) | |
def advanced_check_and_fix_tones_chord(tones_chord, high_pitch=0): | |
lst = tones_chord | |
if 0 < high_pitch < 128: | |
ht = high_pitch % 12 | |
else: | |
ht = 12 | |
cht = find_closest_tone(lst, ht) | |
if len(lst) == 2: | |
if lst[1] - lst[0] == 1: | |
return [cht] | |
else: | |
if 0 in lst and 11 in lst: | |
if find_closest_tone([0, 11], cht) == 11: | |
lst.remove(0) | |
else: | |
lst.remove(11) | |
return lst | |
non_consecutive = [] | |
if len(lst) > 2: | |
for i in range(0, len(lst) - 1): | |
if lst[i] + 1 != lst[i+1]: | |
non_consecutive.append(lst[i]) | |
if lst[-1] - lst[-2] > 1: | |
non_consecutive.append(lst[-1]) | |
if cht not in non_consecutive: | |
non_consecutive.append(cht) | |
non_consecutive.sort() | |
if any(abs(non_consecutive[i+1] - non_consecutive[i]) == 1 for i in range(len(non_consecutive) - 1)): | |
final_list = [x for x in non_consecutive if x == cht or abs(x - cht) > 1] | |
else: | |
final_list = non_consecutive | |
else: | |
final_list = non_consecutive | |
if 0 in final_list and 11 in final_list: | |
if find_closest_tone([0, 11], cht) == 11: | |
final_list.remove(0) | |
else: | |
final_list.remove(11) | |
if cht in final_list or ht in final_list: | |
return final_list | |
else: | |
return ['Error'] | |
################################################################################### | |
def create_similarity_matrix(list_of_values, matrix_length=0): | |
counts = Counter(list_of_values).items() | |
if matrix_length > 0: | |
sim_matrix = [0] * max(matrix_length, len(list_of_values)) | |
else: | |
sim_matrix = [0] * len(counts) | |
for c in counts: | |
sim_matrix[c[0]] = c[1] | |
similarity_matrix = [[0] * len(sim_matrix) for _ in range(len(sim_matrix))] | |
for i in range(len(sim_matrix)): | |
for j in range(len(sim_matrix)): | |
if max(sim_matrix[i], sim_matrix[j]) != 0: | |
similarity_matrix[i][j] = min(sim_matrix[i], sim_matrix[j]) / max(sim_matrix[i], sim_matrix[j]) | |
return similarity_matrix, sim_matrix | |
################################################################################### | |
def augment_enhanced_score_notes(enhanced_score_notes, | |
timings_divider=16, | |
full_sorting=True, | |
timings_shift=0, | |
pitch_shift=0 | |
): | |
esn = copy.deepcopy(enhanced_score_notes) | |
for e in esn: | |
e[1] = int(e[1] / timings_divider) + timings_shift | |
e[2] = int(e[2] / timings_divider) + timings_shift | |
e[4] = e[4] + pitch_shift | |
if full_sorting: | |
# Sorting by patch, pitch, then by start-time | |
esn.sort(key=lambda x: x[6]) | |
esn.sort(key=lambda x: x[4], reverse=True) | |
esn.sort(key=lambda x: x[1]) | |
return esn | |
################################################################################### | |
def stack_list(lst, base=12): | |
return sum(j * base**i for i, j in enumerate(lst[::-1])) | |
def destack_list(num, base=12): | |
lst = [] | |
while num: | |
lst.append(num % base) | |
num //= base | |
return lst[::-1] | |
################################################################################### | |
def extract_melody(chordified_enhanced_score, | |
melody_range=[48, 84], | |
melody_channel=0, | |
melody_patch=0, | |
melody_velocity=0, | |
stacked_melody=False, | |
stacked_melody_base_pitch=60 | |
): | |
if stacked_melody: | |
all_pitches_chords = [] | |
for e in chordified_enhanced_score: | |
all_pitches_chords.append(sorted(set([p[4] for p in e]), reverse=True)) | |
melody_score = [] | |
for i, chord in enumerate(chordified_enhanced_score): | |
if melody_velocity > 0: | |
vel = melody_velocity | |
else: | |
vel = chord[0][5] | |
melody_score.append(['note', chord[0][1], chord[0][2], melody_channel, stacked_melody_base_pitch+(stack_list([p % 12 for p in all_pitches_chords[i]]) % 12), vel, melody_patch]) | |
else: | |
melody_score = copy.deepcopy([c[0] for c in chordified_enhanced_score if c[0][3] != 9]) | |
for e in melody_score: | |
e[3] = melody_channel | |
if melody_velocity > 0: | |
e[5] = melody_velocity | |
e[6] = melody_patch | |
if e[4] < melody_range[0]: | |
e[4] = (e[4] % 12) + melody_range[0] | |
if e[4] >= melody_range[1]: | |
e[4] = (e[4] % 12) + (melody_range[1]-12) | |
return fix_monophonic_score_durations(melody_score) | |
################################################################################### | |
def flip_enhanced_score_notes(enhanced_score_notes): | |
min_pitch = min([e[4] for e in enhanced_score_notes if e[3] != 9]) | |
fliped_score_pitches = [127 - e[4]for e in enhanced_score_notes if e[3] != 9] | |
delta_min_pitch = min_pitch - min([p for p in fliped_score_pitches]) | |
output_score = copy.deepcopy(enhanced_score_notes) | |
for e in output_score: | |
if e[3] != 9: | |
e[4] = (127 - e[4]) + delta_min_pitch | |
return output_score | |
################################################################################### | |
ALL_CHORDS_SORTED = [[0], [0, 2], [0, 3], [0, 4], [0, 2, 4], [0, 5], [0, 2, 5], [0, 3, 5], [0, 6], | |
[0, 2, 6], [0, 3, 6], [0, 4, 6], [0, 2, 4, 6], [0, 7], [0, 2, 7], [0, 3, 7], | |
[0, 4, 7], [0, 5, 7], [0, 2, 4, 7], [0, 2, 5, 7], [0, 3, 5, 7], [0, 8], | |
[0, 2, 8], [0, 3, 8], [0, 4, 8], [0, 5, 8], [0, 6, 8], [0, 2, 4, 8], | |
[0, 2, 5, 8], [0, 2, 6, 8], [0, 3, 5, 8], [0, 3, 6, 8], [0, 4, 6, 8], | |
[0, 2, 4, 6, 8], [0, 9], [0, 2, 9], [0, 3, 9], [0, 4, 9], [0, 5, 9], [0, 6, 9], | |
[0, 7, 9], [0, 2, 4, 9], [0, 2, 5, 9], [0, 2, 6, 9], [0, 2, 7, 9], | |
[0, 3, 5, 9], [0, 3, 6, 9], [0, 3, 7, 9], [0, 4, 6, 9], [0, 4, 7, 9], | |
[0, 5, 7, 9], [0, 2, 4, 6, 9], [0, 2, 4, 7, 9], [0, 2, 5, 7, 9], | |
[0, 3, 5, 7, 9], [0, 10], [0, 2, 10], [0, 3, 10], [0, 4, 10], [0, 5, 10], | |
[0, 6, 10], [0, 7, 10], [0, 8, 10], [0, 2, 4, 10], [0, 2, 5, 10], | |
[0, 2, 6, 10], [0, 2, 7, 10], [0, 2, 8, 10], [0, 3, 5, 10], [0, 3, 6, 10], | |
[0, 3, 7, 10], [0, 3, 8, 10], [0, 4, 6, 10], [0, 4, 7, 10], [0, 4, 8, 10], | |
[0, 5, 7, 10], [0, 5, 8, 10], [0, 6, 8, 10], [0, 2, 4, 6, 10], | |
[0, 2, 4, 7, 10], [0, 2, 4, 8, 10], [0, 2, 5, 7, 10], [0, 2, 5, 8, 10], | |
[0, 2, 6, 8, 10], [0, 3, 5, 7, 10], [0, 3, 5, 8, 10], [0, 3, 6, 8, 10], | |
[0, 4, 6, 8, 10], [0, 2, 4, 6, 8, 10], [1], [1, 3], [1, 4], [1, 5], [1, 3, 5], | |
[1, 6], [1, 3, 6], [1, 4, 6], [1, 7], [1, 3, 7], [1, 4, 7], [1, 5, 7], | |
[1, 3, 5, 7], [1, 8], [1, 3, 8], [1, 4, 8], [1, 5, 8], [1, 6, 8], [1, 3, 5, 8], | |
[1, 3, 6, 8], [1, 4, 6, 8], [1, 9], [1, 3, 9], [1, 4, 9], [1, 5, 9], [1, 6, 9], | |
[1, 7, 9], [1, 3, 5, 9], [1, 3, 6, 9], [1, 3, 7, 9], [1, 4, 6, 9], | |
[1, 4, 7, 9], [1, 5, 7, 9], [1, 3, 5, 7, 9], [1, 10], [1, 3, 10], [1, 4, 10], | |
[1, 5, 10], [1, 6, 10], [1, 7, 10], [1, 8, 10], [1, 3, 5, 10], [1, 3, 6, 10], | |
[1, 3, 7, 10], [1, 3, 8, 10], [1, 4, 6, 10], [1, 4, 7, 10], [1, 4, 8, 10], | |
[1, 5, 7, 10], [1, 5, 8, 10], [1, 6, 8, 10], [1, 3, 5, 7, 10], | |
[1, 3, 5, 8, 10], [1, 3, 6, 8, 10], [1, 4, 6, 8, 10], [1, 11], [1, 3, 11], | |
[1, 4, 11], [1, 5, 11], [1, 6, 11], [1, 7, 11], [1, 8, 11], [1, 9, 11], | |
[1, 3, 5, 11], [1, 3, 6, 11], [1, 3, 7, 11], [1, 3, 8, 11], [1, 3, 9, 11], | |
[1, 4, 6, 11], [1, 4, 7, 11], [1, 4, 8, 11], [1, 4, 9, 11], [1, 5, 7, 11], | |
[1, 5, 8, 11], [1, 5, 9, 11], [1, 6, 8, 11], [1, 6, 9, 11], [1, 7, 9, 11], | |
[1, 3, 5, 7, 11], [1, 3, 5, 8, 11], [1, 3, 5, 9, 11], [1, 3, 6, 8, 11], | |
[1, 3, 6, 9, 11], [1, 3, 7, 9, 11], [1, 4, 6, 8, 11], [1, 4, 6, 9, 11], | |
[1, 4, 7, 9, 11], [1, 5, 7, 9, 11], [1, 3, 5, 7, 9, 11], [2], [2, 4], [2, 5], | |
[2, 6], [2, 4, 6], [2, 7], [2, 4, 7], [2, 5, 7], [2, 8], [2, 4, 8], [2, 5, 8], | |
[2, 6, 8], [2, 4, 6, 8], [2, 9], [2, 4, 9], [2, 5, 9], [2, 6, 9], [2, 7, 9], | |
[2, 4, 6, 9], [2, 4, 7, 9], [2, 5, 7, 9], [2, 10], [2, 4, 10], [2, 5, 10], | |
[2, 6, 10], [2, 7, 10], [2, 8, 10], [2, 4, 6, 10], [2, 4, 7, 10], | |
[2, 4, 8, 10], [2, 5, 7, 10], [2, 5, 8, 10], [2, 6, 8, 10], [2, 4, 6, 8, 10], | |
[2, 11], [2, 4, 11], [2, 5, 11], [2, 6, 11], [2, 7, 11], [2, 8, 11], | |
[2, 9, 11], [2, 4, 6, 11], [2, 4, 7, 11], [2, 4, 8, 11], [2, 4, 9, 11], | |
[2, 5, 7, 11], [2, 5, 8, 11], [2, 5, 9, 11], [2, 6, 8, 11], [2, 6, 9, 11], | |
[2, 7, 9, 11], [2, 4, 6, 8, 11], [2, 4, 6, 9, 11], [2, 4, 7, 9, 11], | |
[2, 5, 7, 9, 11], [3], [3, 5], [3, 6], [3, 7], [3, 5, 7], [3, 8], [3, 5, 8], | |
[3, 6, 8], [3, 9], [3, 5, 9], [3, 6, 9], [3, 7, 9], [3, 5, 7, 9], [3, 10], | |
[3, 5, 10], [3, 6, 10], [3, 7, 10], [3, 8, 10], [3, 5, 7, 10], [3, 5, 8, 10], | |
[3, 6, 8, 10], [3, 11], [3, 5, 11], [3, 6, 11], [3, 7, 11], [3, 8, 11], | |
[3, 9, 11], [3, 5, 7, 11], [3, 5, 8, 11], [3, 5, 9, 11], [3, 6, 8, 11], | |
[3, 6, 9, 11], [3, 7, 9, 11], [3, 5, 7, 9, 11], [4], [4, 6], [4, 7], [4, 8], | |
[4, 6, 8], [4, 9], [4, 6, 9], [4, 7, 9], [4, 10], [4, 6, 10], [4, 7, 10], | |
[4, 8, 10], [4, 6, 8, 10], [4, 11], [4, 6, 11], [4, 7, 11], [4, 8, 11], | |
[4, 9, 11], [4, 6, 8, 11], [4, 6, 9, 11], [4, 7, 9, 11], [5], [5, 7], [5, 8], | |
[5, 9], [5, 7, 9], [5, 10], [5, 7, 10], [5, 8, 10], [5, 11], [5, 7, 11], | |
[5, 8, 11], [5, 9, 11], [5, 7, 9, 11], [6], [6, 8], [6, 9], [6, 10], | |
[6, 8, 10], [6, 11], [6, 8, 11], [6, 9, 11], [7], [7, 9], [7, 10], [7, 11], | |
[7, 9, 11], [8], [8, 10], [8, 11], [9], [9, 11], [10], [11]] | |
################################################################################### | |
MIDI_Instruments_Families = { | |
0: 'Piano Family', | |
1: 'Chromatic Percussion Family', | |
2: 'Organ Family', | |
3: 'Guitar Family', | |
4: 'Bass Family', | |
5: 'Strings Family', | |
6: 'Ensemble Family', | |
7: 'Brass Family', | |
8: 'Reed Family', | |
9: 'Pipe Family', | |
10: 'Synth Lead Family', | |
11: 'Synth Pad Family', | |
12: 'Synth Effects Family', | |
13: 'Ethnic Family', | |
14: 'Percussive Family', | |
15: 'Sound Effects Family', | |
16: 'Drums Family', | |
-1: 'Unknown Family', | |
} | |
################################################################################### | |
def patch_to_instrument_family(MIDI_patch, drums_patch=128): | |
if 0 <= MIDI_patch < 128: | |
return MIDI_patch // 8, MIDI_Instruments_Families[MIDI_patch // 8] | |
elif MIDI_patch == drums_patch: | |
return MIDI_patch // 8, MIDI_Instruments_Families[16] | |
else: | |
return -1, MIDI_Instruments_Families[-1] | |
################################################################################### | |
def patch_list_from_enhanced_score_notes(enhanced_score_notes, | |
default_patch=0, | |
drums_patch=9, | |
verbose=False | |
): | |
patches = [-1] * 16 | |
for idx, e in enumerate(enhanced_score_notes): | |
if e[3] != 9: | |
if patches[e[3]] == -1: | |
patches[e[3]] = e[6] | |
else: | |
if patches[e[3]] != e[6]: | |
if e[6] in patches: | |
e[3] = patches.index(e[6]) | |
else: | |
if -1 in patches: | |
patches[patches.index(-1)] = e[6] | |
else: | |
patches[-1] = e[6] | |
if verbose: | |
print('=' * 70) | |
print('WARNING! Composition has more than 15 patches!') | |
print('Conflict note number:', idx) | |
print('Conflict channel number:', e[3]) | |
print('Conflict patch number:', e[6]) | |
patches = [p if p != -1 else default_patch for p in patches] | |
patches[9] = drums_patch | |
if verbose: | |
print('=' * 70) | |
print('Composition patches') | |
print('=' * 70) | |
for c, p in enumerate(patches): | |
print('Cha', str(c).zfill(2), '---', str(p).zfill(3), Number2patch[p]) | |
print('=' * 70) | |
return patches | |
################################################################################### | |
def patch_enhanced_score_notes(enhanced_score_notes, | |
default_patch=0, | |
drums_patch=9, | |
verbose=False | |
): | |
#=========================================================================== | |
enhanced_score_notes_with_patch_changes = [] | |
patches = [-1] * 16 | |
overflow_idx = -1 | |
for idx, e in enumerate(enhanced_score_notes): | |
if e[3] != 9: | |
if patches[e[3]] == -1: | |
patches[e[3]] = e[6] | |
else: | |
if patches[e[3]] != e[6]: | |
if e[6] in patches: | |
e[3] = patches.index(e[6]) | |
else: | |
if -1 in patches: | |
patches[patches.index(-1)] = e[6] | |
else: | |
overflow_idx = idx | |
break | |
enhanced_score_notes_with_patch_changes.append(e) | |
#=========================================================================== | |
overflow_patches = [] | |
if overflow_idx != -1: | |
for idx, e in enumerate(enhanced_score_notes[overflow_idx:]): | |
if e[3] != 9: | |
if e[6] not in patches: | |
if e[6] not in overflow_patches: | |
overflow_patches.append(e[6]) | |
enhanced_score_notes_with_patch_changes.append(['patch_change', e[1], e[3], e[6]]) | |
else: | |
e[3] = patches.index(e[6]) | |
enhanced_score_notes_with_patch_changes.append(e) | |
#=========================================================================== | |
patches = [p if p != -1 else default_patch for p in patches] | |
patches[9] = drums_patch | |
#=========================================================================== | |
if verbose: | |
print('=' * 70) | |
print('Composition patches') | |
print('=' * 70) | |
for c, p in enumerate(patches): | |
print('Cha', str(c).zfill(2), '---', str(p).zfill(3), Number2patch[p]) | |
print('=' * 70) | |
if overflow_patches: | |
print('Extra composition patches') | |
print('=' * 70) | |
for c, p in enumerate(overflow_patches): | |
print(str(p).zfill(3), Number2patch[p]) | |
print('=' * 70) | |
return enhanced_score_notes_with_patch_changes, patches, overflow_patches | |
################################################################################### | |
def create_enhanced_monophonic_melody(monophonic_melody): | |
enhanced_monophonic_melody = [] | |
for i, note in enumerate(monophonic_melody[:-1]): | |
enhanced_monophonic_melody.append(note) | |
if note[1]+note[2] < monophonic_melody[i+1][1]: | |
delta_time = monophonic_melody[i+1][1] - (note[1]+note[2]) | |
enhanced_monophonic_melody.append(['silence', note[1]+note[2], delta_time, note[3], 0, 0, note[6]]) | |
enhanced_monophonic_melody.append(monophonic_melody[-1]) | |
return enhanced_monophonic_melody | |
################################################################################### | |
def frame_monophonic_melody(monophonic_melody, min_frame_time_threshold=10): | |
mzip = list(zip(monophonic_melody[:-1], monophonic_melody[1:])) | |
times_counts = Counter([(b[1]-a[1]) for a, b in mzip]).most_common() | |
mc_time = next((item for item, count in times_counts if item >= min_frame_time_threshold), min_frame_time_threshold) | |
times = [(b[1]-a[1]) // mc_time for a, b in mzip] + [monophonic_melody[-1][2] // mc_time] | |
framed_melody = [] | |
for i, note in enumerate(monophonic_melody): | |
stime = note[1] | |
count = times[i] | |
if count != 0: | |
for j in range(count): | |
new_note = copy.deepcopy(note) | |
new_note[1] = stime + (j * mc_time) | |
new_note[2] = mc_time | |
framed_melody.append(new_note) | |
else: | |
framed_melody.append(note) | |
return [framed_melody, mc_time] | |
################################################################################### | |
def delta_score_notes(score_notes, | |
timings_clip_value=255, | |
even_timings=False, | |
compress_timings=False | |
): | |
delta_score = [] | |
pe = score_notes[0] | |
for n in score_notes: | |
note = copy.deepcopy(n) | |
time = n[1] - pe[1] | |
dur = n[2] | |
if even_timings: | |
if time != 0 and time % 2 != 0: | |
time += 1 | |
if dur % 2 != 0: | |
dur += 1 | |
time = max(0, min(timings_clip_value, time)) | |
dur = max(0, min(timings_clip_value, dur)) | |
if compress_timings: | |
time /= 2 | |
dur /= 2 | |
note[1] = int(time) | |
note[2] = int(dur) | |
delta_score.append(note) | |
pe = n | |
return delta_score | |
################################################################################### | |
def check_and_fix_chords_in_chordified_score(chordified_score, | |
channels_index=3, | |
pitches_index=4 | |
): | |
fixed_chordified_score = [] | |
bad_chords_counter = 0 | |
for c in chordified_score: | |
tones_chord = sorted(set([t[pitches_index] % 12 for t in c if t[channels_index] != 9])) | |
if tones_chord: | |
if tones_chord not in ALL_CHORDS_SORTED: | |
bad_chords_counter += 1 | |
while tones_chord not in ALL_CHORDS_SORTED: | |
tones_chord.pop(0) | |
new_chord = [] | |
c.sort(key = lambda x: x[pitches_index], reverse=True) | |
for e in c: | |
if e[channels_index] != 9: | |
if e[pitches_index] % 12 in tones_chord: | |
new_chord.append(e) | |
else: | |
new_chord.append(e) | |
fixed_chordified_score.append(new_chord) | |
return fixed_chordified_score, bad_chords_counter | |
################################################################################### | |
from itertools import combinations, groupby | |
################################################################################### | |
def advanced_check_and_fix_chords_in_chordified_score(chordified_score, | |
channels_index=3, | |
pitches_index=4, | |
use_filtered_chords=True, | |
skip_drums=False | |
): | |
fixed_chordified_score = [] | |
bad_chords_counter = 0 | |
if use_filtered_chords: | |
CHORDS = ALL_CHORDS_FILTERED | |
else: | |
CHORDS = ALL_CHORDS_SORTED | |
for c in chordified_score: | |
tones_chord = sorted(set([t[pitches_index] % 12 for t in c if t[channels_index] != 9])) | |
if tones_chord: | |
if tones_chord not in CHORDS: | |
pitches_chord = sorted(set([p[pitches_index] for p in c if p[channels_index] != 9]), reverse=True) | |
if len(tones_chord) == 2: | |
tones_counts = Counter([p % 12 for p in pitches_chord]).most_common() | |
if tones_counts[0][1] > 1: | |
tones_chord = [tones_counts[0][0]] | |
elif tones_counts[1][1] > 1: | |
tones_chord = [tones_counts[1][0]] | |
else: | |
tones_chord = [pitches_chord[0] % 12] | |
else: | |
tones_chord_combs = [list(comb) for i in range(len(tones_chord)-2, 0, -1) for comb in combinations(tones_chord, i+1)] | |
for co in tones_chord_combs: | |
if co in CHORDS: | |
tones_chord = co | |
break | |
bad_chords_counter += 1 | |
new_chord = [] | |
c.sort(key = lambda x: x[pitches_index], reverse=True) | |
for e in c: | |
if e[channels_index] != 9: | |
if e[pitches_index] % 12 in tones_chord: | |
new_chord.append(e) | |
else: | |
if not skip_drums: | |
new_chord.append(e) | |
fixed_chordified_score.append(new_chord) | |
return fixed_chordified_score, bad_chords_counter | |
################################################################################### | |
def score_chord_to_tones_chord(chord, | |
transpose_value=0, | |
channels_index=3, | |
pitches_index=4): | |
return sorted(set([(p[4]+transpose_value) % 12 for p in chord if p[channels_index] != 9])) | |
################################################################################### | |
def grouped_set(seq): | |
return [k for k, v in groupby(seq)] | |
################################################################################### | |
def ordered_set(seq): | |
dic = {} | |
return [k for k, v in dic.fromkeys(seq).items()] | |
################################################################################### | |
def add_melody_to_enhanced_score_notes(enhanced_score_notes, | |
melody_start_time=0, | |
melody_start_chord=0, | |
melody_notes_min_duration=-1, | |
melody_notes_max_duration=255, | |
melody_duration_overlap_tolerance=4, | |
melody_avg_duration_divider=2, | |
melody_base_octave=5, | |
melody_channel=3, | |
melody_patch=40, | |
melody_max_velocity=110, | |
acc_max_velocity=90, | |
pass_drums=True | |
): | |
if pass_drums: | |
score = copy.deepcopy(enhanced_score_notes) | |
else: | |
score = [e for e in copy.deepcopy(enhanced_score_notes) if e[3] !=9] | |
if melody_notes_min_duration > 0: | |
min_duration = melody_notes_min_duration | |
else: | |
durs = [d[2] for d in score] | |
min_duration = Counter(durs).most_common()[0][0] | |
adjust_score_velocities(score, acc_max_velocity) | |
cscore = chordify_score([1000, score]) | |
melody_score = [] | |
acc_score = [] | |
pt = melody_start_time | |
for c in cscore[:melody_start_chord]: | |
acc_score.extend(c) | |
for c in cscore[melody_start_chord:]: | |
durs = [d[2] if d[3] != 9 else -1 for d in c] | |
if not all(d == -1 for d in durs): | |
ndurs = [d for d in durs if d != -1] | |
avg_dur = (sum(ndurs) / len(ndurs)) / melody_avg_duration_divider | |
best_dur = min(durs, key=lambda x:abs(x-avg_dur)) | |
pidx = durs.index(best_dur) | |
cc = copy.deepcopy(c[pidx]) | |
if c[0][1] >= pt - melody_duration_overlap_tolerance and best_dur >= min_duration: | |
cc[3] = melody_channel | |
cc[4] = (c[pidx][4] % 24) | |
cc[5] = 100 + ((c[pidx][4] % 12) * 2) | |
cc[6] = melody_patch | |
melody_score.append(cc) | |
acc_score.extend(c) | |
pt = c[0][1]+c[pidx][2] | |
else: | |
acc_score.extend(c) | |
else: | |
acc_score.extend(c) | |
values = [e[4] % 24 for e in melody_score] | |
smoothed = [values[0]] | |
for i in range(1, len(values)): | |
if abs(smoothed[-1] - values[i]) >= 12: | |
if smoothed[-1] < values[i]: | |
smoothed.append(values[i] - 12) | |
else: | |
smoothed.append(values[i] + 12) | |
else: | |
smoothed.append(values[i]) | |
smoothed_melody = copy.deepcopy(melody_score) | |
for i, e in enumerate(smoothed_melody): | |
e[4] = (melody_base_octave * 12) + smoothed[i] | |
for i, m in enumerate(smoothed_melody[1:]): | |
if m[1] - smoothed_melody[i][1] < melody_notes_max_duration: | |
smoothed_melody[i][2] = m[1] - smoothed_melody[i][1] | |
adjust_score_velocities(smoothed_melody, melody_max_velocity) | |
final_score = sorted(smoothed_melody + acc_score, key=lambda x: (x[1], -x[4])) | |
return final_score | |
################################################################################### | |
def find_paths(list_of_lists, path=[]): | |
if not list_of_lists: | |
return [path] | |
return [p for sublist in list_of_lists[0] for p in find_paths(list_of_lists[1:], path+[sublist])] | |
################################################################################### | |
def recalculate_score_timings(score, start_time=0): | |
rscore = copy.deepcopy(score) | |
pe = rscore[0] | |
abs_time = start_time | |
for e in rscore: | |
dtime = e[1] - pe[1] | |
pe = copy.deepcopy(e) | |
abs_time += dtime | |
e[1] = abs_time | |
return rscore | |
################################################################################### | |
WHITE_NOTES = [0, 2, 4, 5, 7, 9, 11] | |
BLACK_NOTES = [1, 3, 6, 8, 10] | |
################################################################################### | |
ALL_CHORDS_FILTERED = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 7], | |
[0, 3, 7, 10], [0, 3, 8], [0, 3, 9], [0, 3, 10], [0, 4], [0, 4, 6], | |
[0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7], [0, 4, 7, 10], [0, 4, 8], [0, 4, 9], | |
[0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9], [0, 5, 10], [0, 6], [0, 6, 9], | |
[0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9], [0, 10], [1], [1, 4], | |
[1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11], [1, 4, 7], | |
[1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9], [1, 4, 10], | |
[1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9], [1, 5, 10], | |
[1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7], [1, 7, 10], | |
[1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2], [2, 5], | |
[2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6], [2, 6, 9], | |
[2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8], [2, 8, 11], | |
[2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11], [3, 5, 9], | |
[3, 5, 10], [3, 5, 11], [3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11], | |
[3, 9], [3, 10], [3, 11], [4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11], | |
[4, 7], [4, 7, 10], [4, 7, 11], [4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11], | |
[5], [5, 8], [5, 8, 11], [5, 9], [5, 10], [5, 11], [6], [6, 9], [6, 10], | |
[6, 11], [7], [7, 10], [7, 11], [8], [8, 11], [9], [10], [11]] | |
################################################################################### | |
def harmonize_enhanced_melody_score_notes(enhanced_melody_score_notes): | |
mel_tones = [e[4] % 12 for e in enhanced_melody_score_notes] | |
cur_chord = [] | |
song = [] | |
for i, m in enumerate(mel_tones): | |
cur_chord.append(m) | |
cc = sorted(set(cur_chord)) | |
if cc in ALL_CHORDS_FILTERED: | |
song.append(cc) | |
else: | |
while sorted(set(cur_chord)) not in ALL_CHORDS_FILTERED: | |
cur_chord.pop(0) | |
cc = sorted(set(cur_chord)) | |
song.append(cc) | |
return song | |
################################################################################### | |
# This is the end of the TMIDI X Python module | |
################################################################################### |