Spaces:
Sleeping
Sleeping
asigalov61
commited on
Upload TMIDIX.py
Browse files
TMIDIX.py
CHANGED
@@ -1763,7 +1763,10 @@ def plot_ms_SONG(ms_song,
|
|
1763 |
note_height = 0.75,
|
1764 |
show_grid_lines=False,
|
1765 |
return_plt = False,
|
1766 |
-
timings_multiplier=1
|
|
|
|
|
|
|
1767 |
):
|
1768 |
|
1769 |
'''Tegridy ms SONG plotter/vizualizer'''
|
@@ -1817,10 +1820,22 @@ def plot_ms_SONG(ms_song,
|
|
1817 |
|
1818 |
plt.title(plot_title)
|
1819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1820 |
if return_plt:
|
1821 |
return fig
|
1822 |
|
1823 |
plt.show()
|
|
|
1824 |
|
1825 |
###################################################################################
|
1826 |
|
@@ -1933,7 +1948,7 @@ def Tegridy_Any_Pickle_File_Reader(input_file_name='TMIDI_Pickle_File', ext='.pi
|
|
1933 |
|
1934 |
'''Tegridy Pickle File Loader
|
1935 |
|
1936 |
-
Input: Full path and file name without extention
|
1937 |
File extension if different from default .pickle
|
1938 |
|
1939 |
Output: Standard Python 3 unpickled data object
|
@@ -1945,7 +1960,13 @@ def Tegridy_Any_Pickle_File_Reader(input_file_name='TMIDI_Pickle_File', ext='.pi
|
|
1945 |
print('Tegridy Pickle File Loader')
|
1946 |
print('Loading the pickle file. Please wait...')
|
1947 |
|
1948 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
1949 |
content = pickle.load(pickle_file)
|
1950 |
|
1951 |
if verbose:
|
@@ -3520,12 +3541,19 @@ def Tegridy_Split_List(list_to_split, split_value=0):
|
|
3520 |
|
3521 |
# Binary chords functions
|
3522 |
|
3523 |
-
def tones_chord_to_bits(chord):
|
|
|
3524 |
bits = [0] * 12
|
|
|
3525 |
for num in chord:
|
3526 |
bits[num] = 1
|
3527 |
|
3528 |
-
|
|
|
|
|
|
|
|
|
|
|
3529 |
|
3530 |
def bits_to_tones_chord(bits):
|
3531 |
return [i for i, bit in enumerate(bits) if bit == 1]
|
@@ -4582,86 +4610,34 @@ def ascii_text_words_counter(ascii_text):
|
|
4582 |
|
4583 |
def check_and_fix_tones_chord(tones_chord):
|
4584 |
|
4585 |
-
|
4586 |
-
|
4587 |
-
if len(lst) == 2:
|
4588 |
-
if lst[1] - lst[0] == 1:
|
4589 |
-
return [lst[-1]]
|
4590 |
-
else:
|
4591 |
-
if 0 in lst and 11 in lst:
|
4592 |
-
lst.remove(0)
|
4593 |
-
return lst
|
4594 |
-
|
4595 |
-
non_consecutive = [lst[0]]
|
4596 |
-
|
4597 |
-
if len(lst) > 2:
|
4598 |
-
for i in range(1, len(lst) - 1):
|
4599 |
-
if lst[i-1] + 1 != lst[i] and lst[i] + 1 != lst[i+1]:
|
4600 |
-
non_consecutive.append(lst[i])
|
4601 |
-
non_consecutive.append(lst[-1])
|
4602 |
|
4603 |
-
|
4604 |
-
|
|
|
|
|
4605 |
|
4606 |
-
|
4607 |
|
4608 |
###################################################################################
|
4609 |
|
4610 |
def find_closest_tone(tones, tone):
|
4611 |
return min(tones, key=lambda x:abs(x-tone))
|
4612 |
|
4613 |
-
|
4614 |
-
|
4615 |
-
lst = tones_chord
|
4616 |
-
|
4617 |
-
if 0 < high_pitch < 128:
|
4618 |
-
ht = high_pitch % 12
|
4619 |
-
else:
|
4620 |
-
ht = 12
|
4621 |
|
4622 |
-
|
4623 |
|
4624 |
-
|
4625 |
-
if lst[1] - lst[0] == 1:
|
4626 |
-
return [cht]
|
4627 |
-
else:
|
4628 |
-
if 0 in lst and 11 in lst:
|
4629 |
-
if find_closest_tone([0, 11], cht) == 11:
|
4630 |
-
lst.remove(0)
|
4631 |
-
else:
|
4632 |
-
lst.remove(11)
|
4633 |
-
return lst
|
4634 |
-
|
4635 |
-
non_consecutive = []
|
4636 |
-
|
4637 |
-
if len(lst) > 2:
|
4638 |
-
for i in range(0, len(lst) - 1):
|
4639 |
-
if lst[i] + 1 != lst[i+1]:
|
4640 |
-
non_consecutive.append(lst[i])
|
4641 |
-
if lst[-1] - lst[-2] > 1:
|
4642 |
-
non_consecutive.append(lst[-1])
|
4643 |
-
|
4644 |
-
if cht not in non_consecutive:
|
4645 |
-
non_consecutive.append(cht)
|
4646 |
-
non_consecutive.sort()
|
4647 |
-
if any(abs(non_consecutive[i+1] - non_consecutive[i]) == 1 for i in range(len(non_consecutive) - 1)):
|
4648 |
-
final_list = [x for x in non_consecutive if x == cht or abs(x - cht) > 1]
|
4649 |
-
else:
|
4650 |
-
final_list = non_consecutive
|
4651 |
|
4652 |
-
|
4653 |
-
|
|
|
4654 |
|
4655 |
-
|
4656 |
-
|
4657 |
-
final_list.remove(0)
|
4658 |
-
else:
|
4659 |
-
final_list.remove(11)
|
4660 |
|
4661 |
-
|
4662 |
-
return final_list
|
4663 |
-
else:
|
4664 |
-
return ['Error']
|
4665 |
|
4666 |
###################################################################################
|
4667 |
|
@@ -4688,23 +4664,53 @@ def create_similarity_matrix(list_of_values, matrix_length=0):
|
|
4688 |
|
4689 |
###################################################################################
|
4690 |
|
|
|
|
|
|
|
|
|
|
|
|
|
4691 |
def augment_enhanced_score_notes(enhanced_score_notes,
|
4692 |
timings_divider=16,
|
4693 |
full_sorting=True,
|
4694 |
timings_shift=0,
|
4695 |
-
pitch_shift=0
|
|
|
4696 |
):
|
4697 |
|
4698 |
esn = copy.deepcopy(enhanced_score_notes)
|
4699 |
|
4700 |
-
|
4701 |
-
|
4702 |
-
|
4703 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4704 |
|
4705 |
if full_sorting:
|
4706 |
|
4707 |
-
# Sorting by patch, pitch
|
4708 |
esn.sort(key=lambda x: x[6])
|
4709 |
esn.sort(key=lambda x: x[4], reverse=True)
|
4710 |
esn.sort(key=lambda x: x[1])
|
@@ -4895,25 +4901,26 @@ def patch_list_from_enhanced_score_notes(enhanced_score_notes,
|
|
4895 |
patches = [-1] * 16
|
4896 |
|
4897 |
for idx, e in enumerate(enhanced_score_notes):
|
4898 |
-
if e[
|
4899 |
-
|
4900 |
-
|
4901 |
-
|
4902 |
-
|
4903 |
-
if e[
|
4904 |
-
e[
|
4905 |
-
|
4906 |
-
if -1 in patches:
|
4907 |
-
patches[patches.index(-1)] = e[6]
|
4908 |
else:
|
4909 |
-
|
|
|
|
|
|
|
4910 |
|
4911 |
-
|
4912 |
-
|
4913 |
-
|
4914 |
-
|
4915 |
-
|
4916 |
-
|
4917 |
|
4918 |
patches = [p if p != -1 else default_patch for p in patches]
|
4919 |
|
@@ -4946,19 +4953,20 @@ def patch_enhanced_score_notes(enhanced_score_notes,
|
|
4946 |
overflow_idx = -1
|
4947 |
|
4948 |
for idx, e in enumerate(enhanced_score_notes):
|
4949 |
-
if e[
|
4950 |
-
|
4951 |
-
|
4952 |
-
|
4953 |
-
|
4954 |
-
if e[
|
4955 |
-
e[
|
4956 |
-
|
4957 |
-
if -1 in patches:
|
4958 |
-
patches[patches.index(-1)] = e[6]
|
4959 |
else:
|
4960 |
-
|
4961 |
-
|
|
|
|
|
|
|
4962 |
|
4963 |
enhanced_score_notes_with_patch_changes.append(e)
|
4964 |
|
@@ -4968,15 +4976,16 @@ def patch_enhanced_score_notes(enhanced_score_notes,
|
|
4968 |
|
4969 |
if overflow_idx != -1:
|
4970 |
for idx, e in enumerate(enhanced_score_notes[overflow_idx:]):
|
4971 |
-
if e[
|
4972 |
-
if e[
|
4973 |
-
if e[6] not in
|
4974 |
-
|
4975 |
-
|
4976 |
-
|
4977 |
-
|
|
|
4978 |
|
4979 |
-
|
4980 |
|
4981 |
#===========================================================================
|
4982 |
|
@@ -5143,7 +5152,8 @@ def advanced_check_and_fix_chords_in_chordified_score(chordified_score,
|
|
5143 |
channels_index=3,
|
5144 |
pitches_index=4,
|
5145 |
patches_index=6,
|
5146 |
-
use_filtered_chords=
|
|
|
5147 |
remove_duplicate_pitches=True,
|
5148 |
skip_drums=False
|
5149 |
):
|
@@ -5157,6 +5167,9 @@ def advanced_check_and_fix_chords_in_chordified_score(chordified_score,
|
|
5157 |
else:
|
5158 |
CHORDS = ALL_CHORDS_SORTED
|
5159 |
|
|
|
|
|
|
|
5160 |
for c in chordified_score:
|
5161 |
|
5162 |
if remove_duplicate_pitches:
|
@@ -5259,7 +5272,8 @@ def add_melody_to_enhanced_score_notes(enhanced_score_notes,
|
|
5259 |
melody_patch=40,
|
5260 |
melody_max_velocity=110,
|
5261 |
acc_max_velocity=90,
|
5262 |
-
pass_drums=True
|
|
|
5263 |
):
|
5264 |
|
5265 |
if pass_drums:
|
@@ -5337,7 +5351,11 @@ def add_melody_to_enhanced_score_notes(enhanced_score_notes,
|
|
5337 |
|
5338 |
adjust_score_velocities(smoothed_melody, melody_max_velocity)
|
5339 |
|
5340 |
-
|
|
|
|
|
|
|
|
|
5341 |
|
5342 |
return final_score
|
5343 |
|
@@ -5350,7 +5368,10 @@ def find_paths(list_of_lists, path=[]):
|
|
5350 |
|
5351 |
###################################################################################
|
5352 |
|
5353 |
-
def recalculate_score_timings(score,
|
|
|
|
|
|
|
5354 |
|
5355 |
rscore = copy.deepcopy(score)
|
5356 |
|
@@ -5360,10 +5381,10 @@ def recalculate_score_timings(score, start_time=0):
|
|
5360 |
|
5361 |
for e in rscore:
|
5362 |
|
5363 |
-
dtime = e[
|
5364 |
pe = copy.deepcopy(e)
|
5365 |
abs_time += dtime
|
5366 |
-
e[
|
5367 |
|
5368 |
return rscore
|
5369 |
|
@@ -5407,11 +5428,11 @@ def harmonize_enhanced_melody_score_notes(enhanced_melody_score_notes):
|
|
5407 |
cur_chord.append(m)
|
5408 |
cc = sorted(set(cur_chord))
|
5409 |
|
5410 |
-
if cc in
|
5411 |
song.append(cc)
|
5412 |
|
5413 |
else:
|
5414 |
-
while sorted(set(cur_chord)) not in
|
5415 |
cur_chord.pop(0)
|
5416 |
cc = sorted(set(cur_chord))
|
5417 |
song.append(cc)
|
@@ -5611,7 +5632,8 @@ def basic_enhanced_delta_score_notes_detokenizer(tokenized_seq,
|
|
5611 |
def enhanced_chord_to_chord_token(enhanced_chord,
|
5612 |
channels_index=3,
|
5613 |
pitches_index=4,
|
5614 |
-
use_filtered_chords=
|
|
|
5615 |
):
|
5616 |
|
5617 |
bad_chords_counter = 0
|
@@ -5622,6 +5644,9 @@ def enhanced_chord_to_chord_token(enhanced_chord,
|
|
5622 |
else:
|
5623 |
CHORDS = ALL_CHORDS_SORTED
|
5624 |
|
|
|
|
|
|
|
5625 |
tones_chord = sorted(set([t[pitches_index] % 12 for t in enhanced_chord if t[channels_index] != 9]))
|
5626 |
|
5627 |
original_tones_chord = copy.deepcopy(tones_chord)
|
@@ -6360,35 +6385,16 @@ def transpose_pitches(pitches, transpose_value=0):
|
|
6360 |
|
6361 |
###################################################################################
|
6362 |
|
6363 |
-
def reverse_enhanced_score_notes(
|
6364 |
-
|
6365 |
-
score = recalculate_score_timings(enhanced_score_notes)
|
6366 |
-
|
6367 |
-
cscore = chordify_score([1000, score])
|
6368 |
-
|
6369 |
-
abs_dtimes = []
|
6370 |
-
|
6371 |
-
for i, t in enumerate(cscore[:-1]):
|
6372 |
-
abs_dtimes.append(cscore[i+1][0][1])
|
6373 |
-
abs_dtimes.append(cscore[-1][0][1]+cscore[-1][0][2])
|
6374 |
-
|
6375 |
-
new_dtimes = []
|
6376 |
-
pt = abs_dtimes[-1]
|
6377 |
|
6378 |
-
|
6379 |
-
new_dtimes.append(abs(pt-t))
|
6380 |
-
pt = t
|
6381 |
|
6382 |
-
|
|
|
6383 |
|
6384 |
-
|
6385 |
-
|
6386 |
-
for i, t in enumerate(new_mel):
|
6387 |
-
time += new_dtimes[i]
|
6388 |
-
for tt in t:
|
6389 |
-
tt[1] = time
|
6390 |
|
6391 |
-
return
|
6392 |
|
6393 |
###################################################################################
|
6394 |
|
@@ -6403,6 +6409,8 @@ def count_patterns(lst, sublist):
|
|
6403 |
idx += 1
|
6404 |
return count
|
6405 |
|
|
|
|
|
6406 |
def find_lrno_patterns(seq):
|
6407 |
|
6408 |
all_seqs = Counter()
|
@@ -6689,7 +6697,9 @@ def horizontal_ordered_list_search(list_of_lists,
|
|
6689 |
###################################################################################
|
6690 |
|
6691 |
def escore_notes_to_escore_matrix(escore_notes,
|
6692 |
-
alt_velocities=False
|
|
|
|
|
6693 |
):
|
6694 |
|
6695 |
last_time = escore_notes[-1][1]
|
@@ -6713,7 +6723,7 @@ def escore_notes_to_escore_matrix(escore_notes,
|
|
6713 |
etype, time, duration, channel, pitch, velocity, patch = note
|
6714 |
|
6715 |
time = max(0, time)
|
6716 |
-
duration = max(
|
6717 |
channel = max(0, min(15, channel))
|
6718 |
pitch = max(0, min(127, pitch))
|
6719 |
velocity = max(0, min(127, velocity))
|
@@ -6730,6 +6740,18 @@ def escore_notes_to_escore_matrix(escore_notes,
|
|
6730 |
|
6731 |
pe = note
|
6732 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6733 |
escore_matrixes.append(escore_matrix)
|
6734 |
|
6735 |
return [channels_list, escore_matrixes]
|
@@ -6818,7 +6840,9 @@ def escore_matrix_to_original_escore_notes(full_escore_matrix):
|
|
6818 |
|
6819 |
def escore_notes_to_binary_matrix(escore_notes,
|
6820 |
channel=0,
|
6821 |
-
patch=0
|
|
|
|
|
6822 |
):
|
6823 |
|
6824 |
escore = [e for e in escore_notes if e[3] == channel and e[6] == patch]
|
@@ -6839,7 +6863,7 @@ def escore_notes_to_binary_matrix(escore_notes,
|
|
6839 |
etype, time, duration, chan, pitch, velocity, pat = note
|
6840 |
|
6841 |
time = max(0, time)
|
6842 |
-
duration = max(
|
6843 |
chan = max(0, min(15, chan))
|
6844 |
pitch = max(0, min(127, pitch))
|
6845 |
velocity = max(0, min(127, velocity))
|
@@ -6851,6 +6875,18 @@ def escore_notes_to_binary_matrix(escore_notes,
|
|
6851 |
|
6852 |
escore_matrix[t][pitch] = 1
|
6853 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6854 |
return escore_matrix
|
6855 |
|
6856 |
else:
|
@@ -6861,7 +6897,7 @@ def escore_notes_to_binary_matrix(escore_notes,
|
|
6861 |
def binary_matrix_to_original_escore_notes(binary_matrix,
|
6862 |
channel=0,
|
6863 |
patch=0,
|
6864 |
-
velocity
|
6865 |
):
|
6866 |
|
6867 |
result = []
|
@@ -6876,20 +6912,34 @@ def binary_matrix_to_original_escore_notes(binary_matrix,
|
|
6876 |
count += 1
|
6877 |
|
6878 |
else:
|
6879 |
-
|
|
|
|
|
|
|
|
|
6880 |
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6881 |
|
6882 |
-
|
6883 |
|
6884 |
if count > 1:
|
6885 |
result.append([len(binary_matrix)-count, count, j, binary_matrix[-1][j]])
|
|
|
|
|
|
|
|
|
6886 |
|
6887 |
result.sort(key=lambda x: (x[0], -x[2]))
|
6888 |
|
6889 |
original_escore_notes = []
|
6890 |
|
|
|
|
|
6891 |
for r in result:
|
6892 |
-
|
|
|
|
|
|
|
|
|
6893 |
|
6894 |
return sorted(original_escore_notes, key=lambda x: (x[1], -x[4], x[6]))
|
6895 |
|
@@ -7034,6 +7084,1641 @@ def transpose_escore_notes_to_pitch(escore_notes,
|
|
7034 |
|
7035 |
###################################################################################
|
7036 |
|
7037 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7038 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7039 |
###################################################################################
|
|
|
1763 |
note_height = 0.75,
|
1764 |
show_grid_lines=False,
|
1765 |
return_plt = False,
|
1766 |
+
timings_multiplier=1,
|
1767 |
+
save_plt='',
|
1768 |
+
save_only_plt_image=True,
|
1769 |
+
save_transparent=False
|
1770 |
):
|
1771 |
|
1772 |
'''Tegridy ms SONG plotter/vizualizer'''
|
|
|
1820 |
|
1821 |
plt.title(plot_title)
|
1822 |
|
1823 |
+
if save_plt != '':
|
1824 |
+
if save_only_plt_image:
|
1825 |
+
plt.axis('off')
|
1826 |
+
plt.title('')
|
1827 |
+
plt.savefig(save_plt, transparent=save_transparent, bbox_inches='tight', pad_inches=0, facecolor='black')
|
1828 |
+
plt.close()
|
1829 |
+
|
1830 |
+
else:
|
1831 |
+
plt.savefig(save_plt)
|
1832 |
+
plt.close()
|
1833 |
+
|
1834 |
if return_plt:
|
1835 |
return fig
|
1836 |
|
1837 |
plt.show()
|
1838 |
+
plt.close()
|
1839 |
|
1840 |
###################################################################################
|
1841 |
|
|
|
1948 |
|
1949 |
'''Tegridy Pickle File Loader
|
1950 |
|
1951 |
+
Input: Full path and file name with or without extention
|
1952 |
File extension if different from default .pickle
|
1953 |
|
1954 |
Output: Standard Python 3 unpickled data object
|
|
|
1960 |
print('Tegridy Pickle File Loader')
|
1961 |
print('Loading the pickle file. Please wait...')
|
1962 |
|
1963 |
+
if os.path.basename(input_file_name).endswith(ext):
|
1964 |
+
fname = input_file_name
|
1965 |
+
|
1966 |
+
else:
|
1967 |
+
fname = input_file_name + ext
|
1968 |
+
|
1969 |
+
with open(fname, 'rb') as pickle_file:
|
1970 |
content = pickle.load(pickle_file)
|
1971 |
|
1972 |
if verbose:
|
|
|
3541 |
|
3542 |
# Binary chords functions
|
3543 |
|
3544 |
+
def tones_chord_to_bits(chord, reverse=True):
|
3545 |
+
|
3546 |
bits = [0] * 12
|
3547 |
+
|
3548 |
for num in chord:
|
3549 |
bits[num] = 1
|
3550 |
|
3551 |
+
if reverse:
|
3552 |
+
bits.reverse()
|
3553 |
+
return bits
|
3554 |
+
|
3555 |
+
else:
|
3556 |
+
return bits
|
3557 |
|
3558 |
def bits_to_tones_chord(bits):
|
3559 |
return [i for i, bit in enumerate(bits) if bit == 1]
|
|
|
4610 |
|
4611 |
def check_and_fix_tones_chord(tones_chord):
|
4612 |
|
4613 |
+
tones_chord_combs = [list(comb) for i in range(len(tones_chord), 0, -1) for comb in combinations(tones_chord, i)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4614 |
|
4615 |
+
for c in tones_chord_combs:
|
4616 |
+
if c in ALL_CHORDS_FULL:
|
4617 |
+
checked_tones_chord = c
|
4618 |
+
break
|
4619 |
|
4620 |
+
return sorted(checked_tones_chord)
|
4621 |
|
4622 |
###################################################################################
|
4623 |
|
4624 |
def find_closest_tone(tones, tone):
|
4625 |
return min(tones, key=lambda x:abs(x-tone))
|
4626 |
|
4627 |
+
###################################################################################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4628 |
|
4629 |
+
def advanced_check_and_fix_tones_chord(tones_chord, high_pitch=0):
|
4630 |
|
4631 |
+
tones_chord_combs = [list(comb) for i in range(len(tones_chord), 0, -1) for comb in combinations(tones_chord, i)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4632 |
|
4633 |
+
for c in tones_chord_combs:
|
4634 |
+
if c in ALL_CHORDS_FULL:
|
4635 |
+
tchord = c
|
4636 |
|
4637 |
+
if 0 < high_pitch < 128 and len(tchord) == 1:
|
4638 |
+
tchord = [high_pitch % 12]
|
|
|
|
|
|
|
4639 |
|
4640 |
+
return tchord
|
|
|
|
|
|
|
4641 |
|
4642 |
###################################################################################
|
4643 |
|
|
|
4664 |
|
4665 |
###################################################################################
|
4666 |
|
4667 |
+
def ceil_with_precision(value, decimal_places):
|
4668 |
+
factor = 10 ** decimal_places
|
4669 |
+
return math.ceil(value * factor) / factor
|
4670 |
+
|
4671 |
+
###################################################################################
|
4672 |
+
|
4673 |
def augment_enhanced_score_notes(enhanced_score_notes,
|
4674 |
timings_divider=16,
|
4675 |
full_sorting=True,
|
4676 |
timings_shift=0,
|
4677 |
+
pitch_shift=0,
|
4678 |
+
legacy_timings=False
|
4679 |
):
|
4680 |
|
4681 |
esn = copy.deepcopy(enhanced_score_notes)
|
4682 |
|
4683 |
+
pe = enhanced_score_notes[0]
|
4684 |
+
|
4685 |
+
abs_time = max(0, int(enhanced_score_notes[0][1] / timings_divider))
|
4686 |
+
|
4687 |
+
for i, e in enumerate(esn):
|
4688 |
+
|
4689 |
+
dtime = (e[1] / timings_divider) - (pe[1] / timings_divider)
|
4690 |
+
|
4691 |
+
if 0.5 < dtime < 1:
|
4692 |
+
dtime = 1
|
4693 |
+
|
4694 |
+
else:
|
4695 |
+
dtime = int(dtime)
|
4696 |
+
|
4697 |
+
if legacy_timings:
|
4698 |
+
abs_time = int(e[1] / timings_divider) + timings_shift
|
4699 |
+
|
4700 |
+
else:
|
4701 |
+
abs_time += dtime
|
4702 |
+
|
4703 |
+
e[1] = max(0, abs_time + timings_shift)
|
4704 |
+
|
4705 |
+
e[2] = max(1, int(e[2] / timings_divider)) + timings_shift
|
4706 |
+
|
4707 |
+
e[4] = max(1, min(127, e[4] + pitch_shift))
|
4708 |
+
|
4709 |
+
pe = enhanced_score_notes[i]
|
4710 |
|
4711 |
if full_sorting:
|
4712 |
|
4713 |
+
# Sorting by patch, reverse pitch and start-time
|
4714 |
esn.sort(key=lambda x: x[6])
|
4715 |
esn.sort(key=lambda x: x[4], reverse=True)
|
4716 |
esn.sort(key=lambda x: x[1])
|
|
|
4901 |
patches = [-1] * 16
|
4902 |
|
4903 |
for idx, e in enumerate(enhanced_score_notes):
|
4904 |
+
if e[0] == 'note':
|
4905 |
+
if e[3] != 9:
|
4906 |
+
if patches[e[3]] == -1:
|
4907 |
+
patches[e[3]] = e[6]
|
4908 |
+
else:
|
4909 |
+
if patches[e[3]] != e[6]:
|
4910 |
+
if e[6] in patches:
|
4911 |
+
e[3] = patches.index(e[6])
|
|
|
|
|
4912 |
else:
|
4913 |
+
if -1 in patches:
|
4914 |
+
patches[patches.index(-1)] = e[6]
|
4915 |
+
else:
|
4916 |
+
patches[-1] = e[6]
|
4917 |
|
4918 |
+
if verbose:
|
4919 |
+
print('=' * 70)
|
4920 |
+
print('WARNING! Composition has more than 15 patches!')
|
4921 |
+
print('Conflict note number:', idx)
|
4922 |
+
print('Conflict channel number:', e[3])
|
4923 |
+
print('Conflict patch number:', e[6])
|
4924 |
|
4925 |
patches = [p if p != -1 else default_patch for p in patches]
|
4926 |
|
|
|
4953 |
overflow_idx = -1
|
4954 |
|
4955 |
for idx, e in enumerate(enhanced_score_notes):
|
4956 |
+
if e[0] == 'note':
|
4957 |
+
if e[3] != 9:
|
4958 |
+
if patches[e[3]] == -1:
|
4959 |
+
patches[e[3]] = e[6]
|
4960 |
+
else:
|
4961 |
+
if patches[e[3]] != e[6]:
|
4962 |
+
if e[6] in patches:
|
4963 |
+
e[3] = patches.index(e[6])
|
|
|
|
|
4964 |
else:
|
4965 |
+
if -1 in patches:
|
4966 |
+
patches[patches.index(-1)] = e[6]
|
4967 |
+
else:
|
4968 |
+
overflow_idx = idx
|
4969 |
+
break
|
4970 |
|
4971 |
enhanced_score_notes_with_patch_changes.append(e)
|
4972 |
|
|
|
4976 |
|
4977 |
if overflow_idx != -1:
|
4978 |
for idx, e in enumerate(enhanced_score_notes[overflow_idx:]):
|
4979 |
+
if e[0] == 'note':
|
4980 |
+
if e[3] != 9:
|
4981 |
+
if e[6] not in patches:
|
4982 |
+
if e[6] not in overflow_patches:
|
4983 |
+
overflow_patches.append(e[6])
|
4984 |
+
enhanced_score_notes_with_patch_changes.append(['patch_change', e[1], e[3], e[6]])
|
4985 |
+
else:
|
4986 |
+
e[3] = patches.index(e[6])
|
4987 |
|
4988 |
+
enhanced_score_notes_with_patch_changes.append(e)
|
4989 |
|
4990 |
#===========================================================================
|
4991 |
|
|
|
5152 |
channels_index=3,
|
5153 |
pitches_index=4,
|
5154 |
patches_index=6,
|
5155 |
+
use_filtered_chords=False,
|
5156 |
+
use_full_chords=True,
|
5157 |
remove_duplicate_pitches=True,
|
5158 |
skip_drums=False
|
5159 |
):
|
|
|
5167 |
else:
|
5168 |
CHORDS = ALL_CHORDS_SORTED
|
5169 |
|
5170 |
+
if use_full_chords:
|
5171 |
+
CHORDS = ALL_CHORDS_FULL
|
5172 |
+
|
5173 |
for c in chordified_score:
|
5174 |
|
5175 |
if remove_duplicate_pitches:
|
|
|
5272 |
melody_patch=40,
|
5273 |
melody_max_velocity=110,
|
5274 |
acc_max_velocity=90,
|
5275 |
+
pass_drums=True,
|
5276 |
+
return_melody=False
|
5277 |
):
|
5278 |
|
5279 |
if pass_drums:
|
|
|
5351 |
|
5352 |
adjust_score_velocities(smoothed_melody, melody_max_velocity)
|
5353 |
|
5354 |
+
if return_melody:
|
5355 |
+
final_score = sorted(smoothed_melody, key=lambda x: (x[1], -x[4]))
|
5356 |
+
|
5357 |
+
else:
|
5358 |
+
final_score = sorted(smoothed_melody + acc_score, key=lambda x: (x[1], -x[4]))
|
5359 |
|
5360 |
return final_score
|
5361 |
|
|
|
5368 |
|
5369 |
###################################################################################
|
5370 |
|
5371 |
+
def recalculate_score_timings(score,
|
5372 |
+
start_time=0,
|
5373 |
+
timings_index=1
|
5374 |
+
):
|
5375 |
|
5376 |
rscore = copy.deepcopy(score)
|
5377 |
|
|
|
5381 |
|
5382 |
for e in rscore:
|
5383 |
|
5384 |
+
dtime = e[timings_index] - pe[timings_index]
|
5385 |
pe = copy.deepcopy(e)
|
5386 |
abs_time += dtime
|
5387 |
+
e[timings_index] = abs_time
|
5388 |
|
5389 |
return rscore
|
5390 |
|
|
|
5428 |
cur_chord.append(m)
|
5429 |
cc = sorted(set(cur_chord))
|
5430 |
|
5431 |
+
if cc in ALL_CHORDS_FULL:
|
5432 |
song.append(cc)
|
5433 |
|
5434 |
else:
|
5435 |
+
while sorted(set(cur_chord)) not in ALL_CHORDS_FULL:
|
5436 |
cur_chord.pop(0)
|
5437 |
cc = sorted(set(cur_chord))
|
5438 |
song.append(cc)
|
|
|
5632 |
def enhanced_chord_to_chord_token(enhanced_chord,
|
5633 |
channels_index=3,
|
5634 |
pitches_index=4,
|
5635 |
+
use_filtered_chords=False,
|
5636 |
+
use_full_chords=True
|
5637 |
):
|
5638 |
|
5639 |
bad_chords_counter = 0
|
|
|
5644 |
else:
|
5645 |
CHORDS = ALL_CHORDS_SORTED
|
5646 |
|
5647 |
+
if use_full_chords:
|
5648 |
+
CHORDS = ALL_CHORDS_FULL
|
5649 |
+
|
5650 |
tones_chord = sorted(set([t[pitches_index] % 12 for t in enhanced_chord if t[channels_index] != 9]))
|
5651 |
|
5652 |
original_tones_chord = copy.deepcopy(tones_chord)
|
|
|
6385 |
|
6386 |
###################################################################################
|
6387 |
|
6388 |
+
def reverse_enhanced_score_notes(escore_notes):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6389 |
|
6390 |
+
score = recalculate_score_timings(escore_notes)
|
|
|
|
|
6391 |
|
6392 |
+
ematrix = escore_notes_to_escore_matrix(score, reverse_matrix=True)
|
6393 |
+
e_score = escore_matrix_to_original_escore_notes(ematrix)
|
6394 |
|
6395 |
+
reversed_score = recalculate_score_timings(e_score)
|
|
|
|
|
|
|
|
|
|
|
6396 |
|
6397 |
+
return reversed_score
|
6398 |
|
6399 |
###################################################################################
|
6400 |
|
|
|
6409 |
idx += 1
|
6410 |
return count
|
6411 |
|
6412 |
+
###################################################################################
|
6413 |
+
|
6414 |
def find_lrno_patterns(seq):
|
6415 |
|
6416 |
all_seqs = Counter()
|
|
|
6697 |
###################################################################################
|
6698 |
|
6699 |
def escore_notes_to_escore_matrix(escore_notes,
|
6700 |
+
alt_velocities=False,
|
6701 |
+
flip_matrix=False,
|
6702 |
+
reverse_matrix=False
|
6703 |
):
|
6704 |
|
6705 |
last_time = escore_notes[-1][1]
|
|
|
6723 |
etype, time, duration, channel, pitch, velocity, patch = note
|
6724 |
|
6725 |
time = max(0, time)
|
6726 |
+
duration = max(1, duration)
|
6727 |
channel = max(0, min(15, channel))
|
6728 |
pitch = max(0, min(127, pitch))
|
6729 |
velocity = max(0, min(127, velocity))
|
|
|
6740 |
|
6741 |
pe = note
|
6742 |
|
6743 |
+
if flip_matrix:
|
6744 |
+
|
6745 |
+
temp_matrix = []
|
6746 |
+
|
6747 |
+
for m in escore_matrix:
|
6748 |
+
temp_matrix.append(m[::-1])
|
6749 |
+
|
6750 |
+
escore_matrix = temp_matrix
|
6751 |
+
|
6752 |
+
if reverse_matrix:
|
6753 |
+
escore_matrix = escore_matrix[::-1]
|
6754 |
+
|
6755 |
escore_matrixes.append(escore_matrix)
|
6756 |
|
6757 |
return [channels_list, escore_matrixes]
|
|
|
6840 |
|
6841 |
def escore_notes_to_binary_matrix(escore_notes,
|
6842 |
channel=0,
|
6843 |
+
patch=0,
|
6844 |
+
flip_matrix=False,
|
6845 |
+
reverse_matrix=False
|
6846 |
):
|
6847 |
|
6848 |
escore = [e for e in escore_notes if e[3] == channel and e[6] == patch]
|
|
|
6863 |
etype, time, duration, chan, pitch, velocity, pat = note
|
6864 |
|
6865 |
time = max(0, time)
|
6866 |
+
duration = max(1, duration)
|
6867 |
chan = max(0, min(15, chan))
|
6868 |
pitch = max(0, min(127, pitch))
|
6869 |
velocity = max(0, min(127, velocity))
|
|
|
6875 |
|
6876 |
escore_matrix[t][pitch] = 1
|
6877 |
|
6878 |
+
if flip_matrix:
|
6879 |
+
|
6880 |
+
temp_matrix = []
|
6881 |
+
|
6882 |
+
for m in escore_matrix:
|
6883 |
+
temp_matrix.append(m[::-1])
|
6884 |
+
|
6885 |
+
escore_matrix = temp_matrix
|
6886 |
+
|
6887 |
+
if reverse_matrix:
|
6888 |
+
escore_matrix = escore_matrix[::-1]
|
6889 |
+
|
6890 |
return escore_matrix
|
6891 |
|
6892 |
else:
|
|
|
6897 |
def binary_matrix_to_original_escore_notes(binary_matrix,
|
6898 |
channel=0,
|
6899 |
patch=0,
|
6900 |
+
velocity=-1
|
6901 |
):
|
6902 |
|
6903 |
result = []
|
|
|
6912 |
count += 1
|
6913 |
|
6914 |
else:
|
6915 |
+
if count > 1:
|
6916 |
+
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6917 |
+
|
6918 |
+
else:
|
6919 |
+
if binary_matrix[i-1][j] != 0:
|
6920 |
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6921 |
|
6922 |
+
count = 1
|
6923 |
|
6924 |
if count > 1:
|
6925 |
result.append([len(binary_matrix)-count, count, j, binary_matrix[-1][j]])
|
6926 |
+
|
6927 |
+
else:
|
6928 |
+
if binary_matrix[i-1][j] != 0:
|
6929 |
+
result.append([i-count, count, j, binary_matrix[i-1][j]])
|
6930 |
|
6931 |
result.sort(key=lambda x: (x[0], -x[2]))
|
6932 |
|
6933 |
original_escore_notes = []
|
6934 |
|
6935 |
+
vel = velocity
|
6936 |
+
|
6937 |
for r in result:
|
6938 |
+
|
6939 |
+
if velocity == -1:
|
6940 |
+
vel = max(40, r[2])
|
6941 |
+
|
6942 |
+
original_escore_notes.append(['note', r[0], r[1], channel, r[2], vel, patch])
|
6943 |
|
6944 |
return sorted(original_escore_notes, key=lambda x: (x[1], -x[4], x[6]))
|
6945 |
|
|
|
7084 |
|
7085 |
###################################################################################
|
7086 |
|
7087 |
+
CHORDS_TYPES = ['WHITE', 'BLACK', 'UNKNOWN', 'MIXED WHITE', 'MIXED BLACK', 'MIXED GRAY']
|
7088 |
+
|
7089 |
+
###################################################################################
|
7090 |
+
|
7091 |
+
def tones_chord_type(tones_chord,
|
7092 |
+
return_chord_type_index=True,
|
7093 |
+
use_filtered_chords=False,
|
7094 |
+
use_full_chords=True
|
7095 |
+
):
|
7096 |
+
|
7097 |
+
WN = WHITE_NOTES
|
7098 |
+
BN = BLACK_NOTES
|
7099 |
+
MX = WHITE_NOTES + BLACK_NOTES
|
7100 |
+
|
7101 |
+
if use_filtered_chords:
|
7102 |
+
CHORDS = ALL_CHORDS_FILTERED
|
7103 |
+
|
7104 |
+
else:
|
7105 |
+
CHORDS = ALL_CHORDS_SORTED
|
7106 |
+
|
7107 |
+
if use_full_chords:
|
7108 |
+
CHORDS = ALL_CHORDS_FULL
|
7109 |
+
|
7110 |
+
tones_chord = sorted(tones_chord)
|
7111 |
+
|
7112 |
+
ctype = 'UNKNOWN'
|
7113 |
+
|
7114 |
+
if tones_chord in CHORDS:
|
7115 |
+
|
7116 |
+
if sorted(set(tones_chord) & set(WN)) == tones_chord:
|
7117 |
+
ctype = 'WHITE'
|
7118 |
+
|
7119 |
+
elif sorted(set(tones_chord) & set(BN)) == tones_chord:
|
7120 |
+
ctype = 'BLACK'
|
7121 |
+
|
7122 |
+
if len(tones_chord) > 1 and sorted(set(tones_chord) & set(MX)) == tones_chord:
|
7123 |
+
|
7124 |
+
if len(sorted(set(tones_chord) & set(WN))) == len(sorted(set(tones_chord) & set(BN))):
|
7125 |
+
ctype = 'MIXED GRAY'
|
7126 |
+
|
7127 |
+
elif len(sorted(set(tones_chord) & set(WN))) > len(sorted(set(tones_chord) & set(BN))):
|
7128 |
+
ctype = 'MIXED WHITE'
|
7129 |
+
|
7130 |
+
elif len(sorted(set(tones_chord) & set(WN))) < len(sorted(set(tones_chord) & set(BN))):
|
7131 |
+
ctype = 'MIXED BLACK'
|
7132 |
+
|
7133 |
+
if return_chord_type_index:
|
7134 |
+
return CHORDS_TYPES.index(ctype)
|
7135 |
+
|
7136 |
+
else:
|
7137 |
+
return ctype
|
7138 |
+
|
7139 |
+
###################################################################################
|
7140 |
+
|
7141 |
+
def tone_type(tone,
|
7142 |
+
return_tone_type_index=True
|
7143 |
+
):
|
7144 |
+
|
7145 |
+
tone = tone % 12
|
7146 |
+
|
7147 |
+
if tone in BLACK_NOTES:
|
7148 |
+
if return_tone_type_index:
|
7149 |
+
return CHORDS_TYPES.index('BLACK')
|
7150 |
+
else:
|
7151 |
+
return "BLACK"
|
7152 |
+
|
7153 |
+
else:
|
7154 |
+
if return_tone_type_index:
|
7155 |
+
return CHORDS_TYPES.index('WHITE')
|
7156 |
+
else:
|
7157 |
+
return "WHITE"
|
7158 |
+
|
7159 |
+
###################################################################################
|
7160 |
+
|
7161 |
+
def lists_sym_differences(src_list, trg_list):
|
7162 |
+
return list(set(src_list) ^ set(trg_list))
|
7163 |
+
|
7164 |
+
###################################################################################
|
7165 |
+
|
7166 |
+
def lists_differences(long_list, short_list):
|
7167 |
+
return list(set(long_list) - set(short_list))
|
7168 |
+
|
7169 |
+
###################################################################################
|
7170 |
+
|
7171 |
+
def find_best_tones_chord(src_tones_chords,
|
7172 |
+
trg_tones_chords,
|
7173 |
+
find_longest=True
|
7174 |
+
):
|
7175 |
+
|
7176 |
+
not_seen_trg_chords = []
|
7177 |
+
|
7178 |
+
max_len = 0
|
7179 |
+
|
7180 |
+
for tc in trg_tones_chords:
|
7181 |
+
if sorted(tc) in src_tones_chords:
|
7182 |
+
not_seen_trg_chords.append(sorted(tc))
|
7183 |
+
max_len = max(max_len, len(tc))
|
7184 |
+
|
7185 |
+
if not not_seen_trg_chords:
|
7186 |
+
max_len = len(max(trg_tones_chords, key=len))
|
7187 |
+
not_seen_trg_chords = trg_tones_chords
|
7188 |
+
|
7189 |
+
if find_longest:
|
7190 |
+
return random.choice([c for c in not_seen_trg_chords if len(c) == max_len])
|
7191 |
+
|
7192 |
+
else:
|
7193 |
+
return random.choice(not_seen_trg_chords)
|
7194 |
+
|
7195 |
+
###################################################################################
|
7196 |
+
|
7197 |
+
def find_matching_tones_chords(tones_chord,
|
7198 |
+
matching_chord_length=-1,
|
7199 |
+
match_chord_type=True,
|
7200 |
+
use_filtered_chords=True,
|
7201 |
+
use_full_chords=True
|
7202 |
+
):
|
7203 |
+
|
7204 |
+
if use_filtered_chords:
|
7205 |
+
CHORDS = ALL_CHORDS_FILTERED
|
7206 |
+
else:
|
7207 |
+
CHORDS = ALL_CHORDS_SORTED
|
7208 |
+
|
7209 |
+
if use_full_chords:
|
7210 |
+
CHORDS = ALL_CHORDS_FULL
|
7211 |
+
|
7212 |
+
tones_chord = sorted(tones_chord)
|
7213 |
+
|
7214 |
+
tclen = len(tones_chord)
|
7215 |
+
|
7216 |
+
tctype = tones_chord_type(tones_chord, use_filtered_chords=use_filtered_chords)
|
7217 |
+
|
7218 |
+
matches = []
|
7219 |
+
|
7220 |
+
for tc in CHORDS:
|
7221 |
+
|
7222 |
+
if matching_chord_length == -1:
|
7223 |
+
if len(tc) > tclen:
|
7224 |
+
if sorted(lists_intersections(tc, tones_chord)) == tones_chord:
|
7225 |
+
if match_chord_type:
|
7226 |
+
if tones_chord_type(tc, use_filtered_chords=use_filtered_chords) == tctype:
|
7227 |
+
tcdiffs = lists_differences(tc, tones_chord)
|
7228 |
+
if all(tone_type(d) == tctype % 3 for d in tcdiffs):
|
7229 |
+
matches.append(tc)
|
7230 |
+
else:
|
7231 |
+
matches.append(tc)
|
7232 |
+
|
7233 |
+
else:
|
7234 |
+
|
7235 |
+
if len(tc) == max(tclen, matching_chord_length):
|
7236 |
+
if sorted(lists_intersections(tc, tones_chord)) == tones_chord:
|
7237 |
+
if match_chord_type:
|
7238 |
+
if tones_chord_type(tc, use_filtered_chords=use_filtered_chords) == tctype:
|
7239 |
+
tcdiffs = lists_differences(tc, tones_chord)
|
7240 |
+
if all(tone_type(d) == tctype % 3 for d in tcdiffs):
|
7241 |
+
matches.append(tc)
|
7242 |
+
else:
|
7243 |
+
matches.append(tc)
|
7244 |
+
|
7245 |
+
return sorted(matches, key=len)
|
7246 |
+
|
7247 |
+
###################################################################################
|
7248 |
+
|
7249 |
+
def adjust_list_of_values_to_target_average(list_of_values,
|
7250 |
+
trg_avg,
|
7251 |
+
min_value,
|
7252 |
+
max_value
|
7253 |
+
):
|
7254 |
+
|
7255 |
+
filtered_values = [value for value in list_of_values if min_value <= value <= max_value]
|
7256 |
+
|
7257 |
+
if not filtered_values:
|
7258 |
+
return list_of_values
|
7259 |
+
|
7260 |
+
current_avg = sum(filtered_values) / len(filtered_values)
|
7261 |
+
scale_factor = trg_avg / current_avg
|
7262 |
+
|
7263 |
+
adjusted_values = [value * scale_factor for value in filtered_values]
|
7264 |
+
|
7265 |
+
total_difference = trg_avg * len(filtered_values) - sum(adjusted_values)
|
7266 |
+
adjustment_per_value = total_difference / len(filtered_values)
|
7267 |
+
|
7268 |
+
final_values = [value + adjustment_per_value for value in adjusted_values]
|
7269 |
+
|
7270 |
+
while abs(sum(final_values) / len(final_values) - trg_avg) > 1e-6:
|
7271 |
+
total_difference = trg_avg * len(final_values) - sum(final_values)
|
7272 |
+
adjustment_per_value = total_difference / len(final_values)
|
7273 |
+
final_values = [value + adjustment_per_value for value in final_values]
|
7274 |
+
|
7275 |
+
final_values = [round(value) for value in final_values]
|
7276 |
+
|
7277 |
+
adjusted_values = copy.deepcopy(list_of_values)
|
7278 |
+
|
7279 |
+
j = 0
|
7280 |
+
|
7281 |
+
for i in range(len(adjusted_values)):
|
7282 |
+
if min_value <= adjusted_values[i] <= max_value:
|
7283 |
+
adjusted_values[i] = final_values[j]
|
7284 |
+
j += 1
|
7285 |
+
|
7286 |
+
return adjusted_values
|
7287 |
+
|
7288 |
+
###################################################################################
|
7289 |
+
|
7290 |
+
def adjust_escore_notes_to_average(escore_notes,
|
7291 |
+
trg_avg,
|
7292 |
+
min_value=1,
|
7293 |
+
max_value=4000,
|
7294 |
+
times_index=1,
|
7295 |
+
durs_index=2,
|
7296 |
+
score_is_delta=False,
|
7297 |
+
return_delta_scpre=False
|
7298 |
+
):
|
7299 |
+
if score_is_delta:
|
7300 |
+
delta_escore_notes = copy.deepcopy(escore_notes)
|
7301 |
+
|
7302 |
+
else:
|
7303 |
+
delta_escore_notes = delta_score_notes(escore_notes)
|
7304 |
+
|
7305 |
+
times = [[e[times_index], e[durs_index]] for e in delta_escore_notes]
|
7306 |
+
|
7307 |
+
filtered_values = [value for value in times if min_value <= value[0] <= max_value]
|
7308 |
+
|
7309 |
+
if not filtered_values:
|
7310 |
+
return escore_notes
|
7311 |
+
|
7312 |
+
current_avg = sum([v[0] for v in filtered_values]) / len([v[0] for v in filtered_values])
|
7313 |
+
scale_factor = trg_avg / current_avg
|
7314 |
+
|
7315 |
+
adjusted_values = [[value[0] * scale_factor, value[1] * scale_factor] for value in filtered_values]
|
7316 |
+
|
7317 |
+
total_difference = trg_avg * len([v[0] for v in filtered_values]) - sum([v[0] for v in adjusted_values])
|
7318 |
+
adjustment_per_value = total_difference / len(filtered_values)
|
7319 |
+
|
7320 |
+
final_values = [[value[0] + adjustment_per_value, value[1] + adjustment_per_value] for value in adjusted_values]
|
7321 |
+
|
7322 |
+
while abs(sum([v[0] for v in final_values]) / len(final_values) - trg_avg) > 1e-6:
|
7323 |
+
total_difference = trg_avg * len(final_values) - sum([v[0] for v in final_values])
|
7324 |
+
adjustment_per_value = total_difference / len(final_values)
|
7325 |
+
final_values = [[value[0] + adjustment_per_value, value[1] + adjustment_per_value] for value in final_values]
|
7326 |
+
|
7327 |
+
final_values = [[round(value[0]), round(value[1])] for value in final_values]
|
7328 |
+
|
7329 |
+
adjusted_delta_score = copy.deepcopy(delta_escore_notes)
|
7330 |
+
|
7331 |
+
j = 0
|
7332 |
+
|
7333 |
+
for i in range(len(adjusted_delta_score)):
|
7334 |
+
if min_value <= adjusted_delta_score[i][1] <= max_value:
|
7335 |
+
adjusted_delta_score[i][times_index] = final_values[j][0]
|
7336 |
+
adjusted_delta_score[i][durs_index] = final_values[j][1]
|
7337 |
+
j += 1
|
7338 |
+
|
7339 |
+
adjusted_escore_notes = delta_score_to_abs_score(adjusted_delta_score)
|
7340 |
+
|
7341 |
+
if return_delta_scpre:
|
7342 |
+
return adjusted_delta_score
|
7343 |
+
|
7344 |
+
else:
|
7345 |
+
return adjusted_escore_notes
|
7346 |
+
|
7347 |
+
###################################################################################
|
7348 |
+
|
7349 |
+
def harmonize_enhanced_melody_score_notes_to_ms_SONG(escore_notes,
|
7350 |
+
melody_velocity=-1,
|
7351 |
+
melody_channel=3,
|
7352 |
+
melody_patch=40,
|
7353 |
+
melody_base_octave=4,
|
7354 |
+
harmonized_tones_chords_velocity=-1,
|
7355 |
+
harmonized_tones_chords_channel=0,
|
7356 |
+
harmonized_tones_chords_patch=0
|
7357 |
+
):
|
7358 |
+
|
7359 |
+
harmonized_tones_chords = harmonize_enhanced_melody_score_notes(escore_notes)
|
7360 |
+
|
7361 |
+
harm_escore_notes = []
|
7362 |
+
|
7363 |
+
time = 0
|
7364 |
+
|
7365 |
+
for i, note in enumerate(escore_notes):
|
7366 |
+
|
7367 |
+
time = note[1]
|
7368 |
+
dur = note[2]
|
7369 |
+
ptc = note[4]
|
7370 |
+
|
7371 |
+
if melody_velocity == -1:
|
7372 |
+
vel = int(110 + ((ptc % 12) * 1.5))
|
7373 |
+
else:
|
7374 |
+
vel = melody_velocity
|
7375 |
+
|
7376 |
+
harm_escore_notes.append(['note', time, dur, melody_channel, ptc, vel, melody_patch])
|
7377 |
+
|
7378 |
+
for t in harmonized_tones_chords[i]:
|
7379 |
+
|
7380 |
+
ptc = (melody_base_octave * 12) + t
|
7381 |
+
|
7382 |
+
if harmonized_tones_chords_velocity == -1:
|
7383 |
+
vel = int(80 + ((ptc % 12) * 1.5))
|
7384 |
+
else:
|
7385 |
+
vel = harmonized_tones_chords_velocity
|
7386 |
+
|
7387 |
+
harm_escore_notes.append(['note', time, dur, harmonized_tones_chords_channel, ptc, vel, harmonized_tones_chords_patch])
|
7388 |
+
|
7389 |
+
return sorted(harm_escore_notes, key=lambda x: (x[1], -x[4], x[6]))
|
7390 |
+
|
7391 |
+
###################################################################################
|
7392 |
+
|
7393 |
+
def check_and_fix_pitches_chord(pitches_chord,
|
7394 |
+
use_filtered_chords=False,
|
7395 |
+
use_full_chords=True
|
7396 |
+
):
|
7397 |
+
|
7398 |
+
pitches_chord = sorted(pitches_chord, reverse=True)
|
7399 |
+
|
7400 |
+
if use_filtered_chords:
|
7401 |
+
CHORDS = ALL_CHORDS_FILTERED
|
7402 |
+
else:
|
7403 |
+
CHORDS = ALL_CHORDS_SORTED
|
7404 |
+
|
7405 |
+
if use_full_chords:
|
7406 |
+
CHORDS = ALL_CHORDS_FULL
|
7407 |
+
|
7408 |
+
tones_chord = sorted(set([p % 12 for p in pitches_chord]))
|
7409 |
+
|
7410 |
+
if tones_chord not in CHORDS:
|
7411 |
+
|
7412 |
+
if len(tones_chord) == 2:
|
7413 |
+
|
7414 |
+
tones_counts = Counter([p % 12 for p in pitches_chord]).most_common()
|
7415 |
+
|
7416 |
+
if tones_counts[0][1] > 1:
|
7417 |
+
tones_chord = [tones_counts[0][0]]
|
7418 |
+
elif tones_counts[1][1] > 1:
|
7419 |
+
tones_chord = [tones_counts[1][0]]
|
7420 |
+
else:
|
7421 |
+
tones_chord = [pitches_chord[0] % 12]
|
7422 |
+
|
7423 |
+
if len(tones_chord) > 2:
|
7424 |
+
|
7425 |
+
tones_chord_combs = [list(comb) for i in range(len(tones_chord)-2, 0, -1) for comb in combinations(tones_chord, i+1)]
|
7426 |
+
|
7427 |
+
tchord = []
|
7428 |
|
7429 |
+
for co in tones_chord_combs:
|
7430 |
+
if co in CHORDS:
|
7431 |
+
tchord = co
|
7432 |
+
break
|
7433 |
+
|
7434 |
+
if tchord:
|
7435 |
+
tones_chord = tchord
|
7436 |
+
|
7437 |
+
else:
|
7438 |
+
tones_chord = [pitches_chord[0] % 12]
|
7439 |
+
|
7440 |
+
new_pitches_chord = []
|
7441 |
+
|
7442 |
+
for p in pitches_chord:
|
7443 |
+
|
7444 |
+
if p % 12 in tones_chord:
|
7445 |
+
new_pitches_chord.append(p)
|
7446 |
+
|
7447 |
+
return sorted(new_pitches_chord, reverse=True)
|
7448 |
+
|
7449 |
+
###################################################################################
|
7450 |
+
|
7451 |
+
ALL_CHORDS_TRANS = [[0], [0, 4], [0, 4, 7], [0, 4, 8], [0, 5], [0, 6], [0, 7], [0, 8], [1], [1, 5],
|
7452 |
+
[1, 5, 9], [1, 6], [1, 7], [1, 8], [1, 9], [2], [2, 6], [2, 6, 10], [2, 7],
|
7453 |
+
[2, 8], [2, 9], [2, 10], [3], [3, 7], [3, 7, 11], [3, 8], [3, 9], [3, 10],
|
7454 |
+
[3, 11], [4], [4, 7], [4, 7, 11], [4, 8], [4, 9], [4, 10], [4, 11], [5],
|
7455 |
+
[5, 9], [5, 10], [5, 11], [6], [6, 10], [6, 11], [7], [7, 11], [8], [9], [10],
|
7456 |
+
[11]]
|
7457 |
+
|
7458 |
+
###################################################################################
|
7459 |
+
|
7460 |
+
def minkowski_distance(x, y, p=3, pad_value=float('inf')):
|
7461 |
+
|
7462 |
+
if len(x) != len(y):
|
7463 |
+
return -1
|
7464 |
+
|
7465 |
+
distance = 0
|
7466 |
+
|
7467 |
+
for i in range(len(x)):
|
7468 |
+
|
7469 |
+
if x[i] == pad_value or y[i] == pad_value:
|
7470 |
+
continue
|
7471 |
+
|
7472 |
+
distance += abs(x[i] - y[i]) ** p
|
7473 |
+
|
7474 |
+
return distance ** (1 / p)
|
7475 |
+
|
7476 |
+
###################################################################################
|
7477 |
+
|
7478 |
+
def dot_product(x, y, pad_value=None):
|
7479 |
+
return sum(xi * yi for xi, yi in zip(x, y) if xi != pad_value and yi != pad_value)
|
7480 |
+
|
7481 |
+
def norm(vector, pad_value=None):
|
7482 |
+
return sum(xi ** 2 for xi in vector if xi != pad_value) ** 0.5
|
7483 |
+
|
7484 |
+
def cosine_similarity(x, y, pad_value=None):
|
7485 |
+
if len(x) != len(y):
|
7486 |
+
return -1
|
7487 |
+
|
7488 |
+
dot_prod = dot_product(x, y, pad_value)
|
7489 |
+
norm_x = norm(x, pad_value)
|
7490 |
+
norm_y = norm(y, pad_value)
|
7491 |
+
|
7492 |
+
if norm_x == 0 or norm_y == 0:
|
7493 |
+
return 0.0
|
7494 |
+
|
7495 |
+
return dot_prod / (norm_x * norm_y)
|
7496 |
+
|
7497 |
+
###################################################################################
|
7498 |
+
|
7499 |
+
def hamming_distance(arr1, arr2, pad_value):
|
7500 |
+
return sum(el1 != el2 for el1, el2 in zip(arr1, arr2) if el1 != pad_value and el2 != pad_value)
|
7501 |
+
|
7502 |
+
###################################################################################
|
7503 |
+
|
7504 |
+
def jaccard_similarity(arr1, arr2, pad_value):
|
7505 |
+
intersection = sum(el1 and el2 for el1, el2 in zip(arr1, arr2) if el1 != pad_value and el2 != pad_value)
|
7506 |
+
union = sum((el1 or el2) for el1, el2 in zip(arr1, arr2) if el1 != pad_value or el2 != pad_value)
|
7507 |
+
return intersection / union if union != 0 else 0
|
7508 |
+
|
7509 |
+
###################################################################################
|
7510 |
+
|
7511 |
+
def pearson_correlation(arr1, arr2, pad_value):
|
7512 |
+
filtered_pairs = [(el1, el2) for el1, el2 in zip(arr1, arr2) if el1 != pad_value and el2 != pad_value]
|
7513 |
+
if not filtered_pairs:
|
7514 |
+
return 0
|
7515 |
+
n = len(filtered_pairs)
|
7516 |
+
sum1 = sum(el1 for el1, el2 in filtered_pairs)
|
7517 |
+
sum2 = sum(el2 for el1, el2 in filtered_pairs)
|
7518 |
+
sum1_sq = sum(el1 ** 2 for el1, el2 in filtered_pairs)
|
7519 |
+
sum2_sq = sum(el2 ** 2 for el1, el2 in filtered_pairs)
|
7520 |
+
p_sum = sum(el1 * el2 for el1, el2 in filtered_pairs)
|
7521 |
+
num = p_sum - (sum1 * sum2 / n)
|
7522 |
+
den = ((sum1_sq - sum1 ** 2 / n) * (sum2_sq - sum2 ** 2 / n)) ** 0.5
|
7523 |
+
if den == 0:
|
7524 |
+
return 0
|
7525 |
+
return num / den
|
7526 |
+
|
7527 |
+
###################################################################################
|
7528 |
+
|
7529 |
+
def calculate_combined_distances(array_of_arrays,
|
7530 |
+
combine_hamming_distance=True,
|
7531 |
+
combine_jaccard_similarity=True,
|
7532 |
+
combine_pearson_correlation=True,
|
7533 |
+
pad_value=None
|
7534 |
+
):
|
7535 |
+
|
7536 |
+
binary_arrays = array_of_arrays
|
7537 |
+
binary_array_len = len(binary_arrays)
|
7538 |
+
|
7539 |
+
hamming_distances = [[0] * binary_array_len for _ in range(binary_array_len)]
|
7540 |
+
jaccard_similarities = [[0] * binary_array_len for _ in range(binary_array_len)]
|
7541 |
+
pearson_correlations = [[0] * binary_array_len for _ in range(binary_array_len)]
|
7542 |
+
|
7543 |
+
for i in range(binary_array_len):
|
7544 |
+
for j in range(i + 1, binary_array_len):
|
7545 |
+
hamming_distances[i][j] = hamming_distance(binary_arrays[i], binary_arrays[j], pad_value)
|
7546 |
+
hamming_distances[j][i] = hamming_distances[i][j]
|
7547 |
+
|
7548 |
+
jaccard_similarities[i][j] = jaccard_similarity(binary_arrays[i], binary_arrays[j], pad_value)
|
7549 |
+
jaccard_similarities[j][i] = jaccard_similarities[i][j]
|
7550 |
+
|
7551 |
+
pearson_correlations[i][j] = pearson_correlation(binary_arrays[i], binary_arrays[j], pad_value)
|
7552 |
+
pearson_correlations[j][i] = pearson_correlations[i][j]
|
7553 |
+
|
7554 |
+
max_hamming = max(max(row) for row in hamming_distances)
|
7555 |
+
min_hamming = min(min(row) for row in hamming_distances)
|
7556 |
+
normalized_hamming = [[(val - min_hamming) / (max_hamming - min_hamming) for val in row] for row in hamming_distances]
|
7557 |
+
|
7558 |
+
max_jaccard = max(max(row) for row in jaccard_similarities)
|
7559 |
+
min_jaccard = min(min(row) for row in jaccard_similarities)
|
7560 |
+
normalized_jaccard = [[(val - min_jaccard) / (max_jaccard - min_jaccard) for val in row] for row in jaccard_similarities]
|
7561 |
+
|
7562 |
+
max_pearson = max(max(row) for row in pearson_correlations)
|
7563 |
+
min_pearson = min(min(row) for row in pearson_correlations)
|
7564 |
+
normalized_pearson = [[(val - min_pearson) / (max_pearson - min_pearson) for val in row] for row in pearson_correlations]
|
7565 |
+
|
7566 |
+
selected_metrics = 0
|
7567 |
+
|
7568 |
+
if combine_hamming_distance:
|
7569 |
+
selected_metrics += normalized_hamming[i][j]
|
7570 |
+
|
7571 |
+
if combine_jaccard_similarity:
|
7572 |
+
selected_metrics += (1 - normalized_jaccard[i][j])
|
7573 |
+
|
7574 |
+
if combine_pearson_correlation:
|
7575 |
+
selected_metrics += (1 - normalized_pearson[i][j])
|
7576 |
+
|
7577 |
+
combined_metric = [[selected_metrics for i in range(binary_array_len)] for j in range(binary_array_len)]
|
7578 |
+
|
7579 |
+
return combined_metric
|
7580 |
+
|
7581 |
+
###################################################################################
|
7582 |
+
|
7583 |
+
def tones_chords_to_bits(tones_chords):
|
7584 |
+
|
7585 |
+
bits_tones_chords = []
|
7586 |
+
|
7587 |
+
for c in tones_chords:
|
7588 |
+
|
7589 |
+
c.sort()
|
7590 |
+
|
7591 |
+
bits = tones_chord_to_bits(c)
|
7592 |
+
|
7593 |
+
bits_tones_chords.append(bits)
|
7594 |
+
|
7595 |
+
return bits_tones_chords
|
7596 |
+
|
7597 |
+
###################################################################################
|
7598 |
+
|
7599 |
+
def tones_chords_to_ints(tones_chords):
|
7600 |
+
|
7601 |
+
ints_tones_chords = []
|
7602 |
+
|
7603 |
+
for c in tones_chords:
|
7604 |
+
|
7605 |
+
c.sort()
|
7606 |
+
|
7607 |
+
bits = tones_chord_to_bits(c)
|
7608 |
+
|
7609 |
+
number = bits_to_int(bits)
|
7610 |
+
|
7611 |
+
ints_tones_chords.append(number)
|
7612 |
+
|
7613 |
+
return ints_tones_chords
|
7614 |
+
|
7615 |
+
###################################################################################
|
7616 |
+
|
7617 |
+
def tones_chords_to_types(tones_chords,
|
7618 |
+
return_chord_type_index=False
|
7619 |
+
):
|
7620 |
+
|
7621 |
+
types_tones_chords = []
|
7622 |
+
|
7623 |
+
for c in tones_chords:
|
7624 |
+
|
7625 |
+
c.sort()
|
7626 |
+
|
7627 |
+
ctype = tones_chord_type(c, return_chord_type_index=return_chord_type_index)
|
7628 |
+
|
7629 |
+
types_tones_chords.append(ctype)
|
7630 |
+
|
7631 |
+
return types_tones_chords
|
7632 |
+
|
7633 |
+
###################################################################################
|
7634 |
+
|
7635 |
+
def morph_tones_chord(tones_chord,
|
7636 |
+
trg_tone,
|
7637 |
+
use_filtered_chords=True,
|
7638 |
+
use_full_chords=True
|
7639 |
+
):
|
7640 |
+
|
7641 |
+
src_tones_chord = sorted(sorted(set(tones_chord)) + [trg_tone])
|
7642 |
+
|
7643 |
+
combs = [list(comb) for i in range(len(src_tones_chord), 0, -1) for comb in combinations(src_tones_chord, i) if trg_tone in list(comb)]
|
7644 |
+
|
7645 |
+
matches = []
|
7646 |
+
|
7647 |
+
if use_filtered_chords:
|
7648 |
+
CHORDS = ALL_CHORDS_FILTERED
|
7649 |
+
|
7650 |
+
else:
|
7651 |
+
CHORDS = ALL_CHORDS_SORTED
|
7652 |
+
|
7653 |
+
if use_full_chords:
|
7654 |
+
CHORDS = ALL_CHORDS_FULL
|
7655 |
+
|
7656 |
+
for c in combs:
|
7657 |
+
if sorted(set(c)) in CHORDS:
|
7658 |
+
matches.append(sorted(set(c)))
|
7659 |
+
|
7660 |
+
max_len = len(max(matches, key=len))
|
7661 |
+
|
7662 |
+
return random.choice([m for m in matches if len(m) == max_len])
|
7663 |
+
|
7664 |
+
###################################################################################
|
7665 |
+
|
7666 |
+
def compress_binary_matrix(binary_matrix,
|
7667 |
+
only_compress_zeros=False,
|
7668 |
+
return_compression_ratio=False
|
7669 |
+
):
|
7670 |
+
|
7671 |
+
compressed_bmatrix = []
|
7672 |
+
|
7673 |
+
zm = [0] * len(binary_matrix[0])
|
7674 |
+
pm = [0] * len(binary_matrix[0])
|
7675 |
+
|
7676 |
+
mcount = 0
|
7677 |
+
|
7678 |
+
for m in binary_matrix:
|
7679 |
+
|
7680 |
+
if only_compress_zeros:
|
7681 |
+
if m != zm:
|
7682 |
+
compressed_bmatrix.append(m)
|
7683 |
+
mcount += 1
|
7684 |
+
|
7685 |
+
else:
|
7686 |
+
if m != pm:
|
7687 |
+
compressed_bmatrix.append(m)
|
7688 |
+
mcount += 1
|
7689 |
+
|
7690 |
+
pm = m
|
7691 |
+
|
7692 |
+
if return_compression_ratio:
|
7693 |
+
return [compressed_bmatrix, mcount / len(binary_matrix)]
|
7694 |
+
|
7695 |
+
else:
|
7696 |
+
return compressed_bmatrix
|
7697 |
+
|
7698 |
+
###################################################################################
|
7699 |
+
|
7700 |
+
def solo_piano_escore_notes(escore_notes,
|
7701 |
+
channels_index=3,
|
7702 |
+
pitches_index=4,
|
7703 |
+
patches_index=6,
|
7704 |
+
keep_drums=False,
|
7705 |
+
):
|
7706 |
+
|
7707 |
+
cscore = chordify_score([1000, escore_notes])
|
7708 |
+
|
7709 |
+
sp_escore_notes = []
|
7710 |
+
|
7711 |
+
for c in cscore:
|
7712 |
+
|
7713 |
+
seen = []
|
7714 |
+
chord = []
|
7715 |
+
|
7716 |
+
for cc in c:
|
7717 |
+
if cc[pitches_index] not in seen:
|
7718 |
+
|
7719 |
+
if cc[channels_index] != 9:
|
7720 |
+
cc[channels_index] = 0
|
7721 |
+
cc[patches_index] = 0
|
7722 |
+
|
7723 |
+
chord.append(cc)
|
7724 |
+
seen.append(cc[pitches_index])
|
7725 |
+
|
7726 |
+
else:
|
7727 |
+
if keep_drums:
|
7728 |
+
chord.append(cc)
|
7729 |
+
seen.append(cc[pitches_index])
|
7730 |
+
|
7731 |
+
sp_escore_notes.append(chord)
|
7732 |
+
|
7733 |
+
return flatten(sp_escore_notes)
|
7734 |
+
|
7735 |
+
###################################################################################
|
7736 |
+
|
7737 |
+
def strip_drums_from_escore_notes(escore_notes,
|
7738 |
+
channels_index=3
|
7739 |
+
):
|
7740 |
+
|
7741 |
+
return [e for e in escore_notes if e[channels_index] != 9]
|
7742 |
+
|
7743 |
+
###################################################################################
|
7744 |
+
|
7745 |
+
def fixed_escore_notes_timings(escore_notes,
|
7746 |
+
fixed_durations=False,
|
7747 |
+
fixed_timings_multiplier=1,
|
7748 |
+
custom_fixed_time=-1,
|
7749 |
+
custom_fixed_dur=-1
|
7750 |
+
):
|
7751 |
+
|
7752 |
+
fixed_timings_escore_notes = delta_score_notes(escore_notes, even_timings=True)
|
7753 |
+
|
7754 |
+
mode_time = round(Counter([e[1] for e in fixed_timings_escore_notes if e[1] != 0]).most_common()[0][0] * fixed_timings_multiplier)
|
7755 |
+
|
7756 |
+
if mode_time % 2 != 0:
|
7757 |
+
mode_time += 1
|
7758 |
+
|
7759 |
+
mode_dur = round(Counter([e[2] for e in fixed_timings_escore_notes if e[2] != 0]).most_common()[0][0] * fixed_timings_multiplier)
|
7760 |
+
|
7761 |
+
if mode_dur % 2 != 0:
|
7762 |
+
mode_dur += 1
|
7763 |
+
|
7764 |
+
for e in fixed_timings_escore_notes:
|
7765 |
+
if e[1] != 0:
|
7766 |
+
|
7767 |
+
if custom_fixed_time > 0:
|
7768 |
+
e[1] = custom_fixed_time
|
7769 |
+
|
7770 |
+
else:
|
7771 |
+
e[1] = mode_time
|
7772 |
+
|
7773 |
+
if fixed_durations:
|
7774 |
+
|
7775 |
+
if custom_fixed_dur > 0:
|
7776 |
+
e[2] = custom_fixed_dur
|
7777 |
+
|
7778 |
+
else:
|
7779 |
+
e[2] = mode_dur
|
7780 |
+
|
7781 |
+
return delta_score_to_abs_score(fixed_timings_escore_notes)
|
7782 |
+
|
7783 |
+
###################################################################################
|
7784 |
+
|
7785 |
+
def cubic_kernel(x):
|
7786 |
+
abs_x = abs(x)
|
7787 |
+
if abs_x <= 1:
|
7788 |
+
return 1.5 * abs_x**3 - 2.5 * abs_x**2 + 1
|
7789 |
+
elif abs_x <= 2:
|
7790 |
+
return -0.5 * abs_x**3 + 2.5 * abs_x**2 - 4 * abs_x + 2
|
7791 |
+
else:
|
7792 |
+
return 0
|
7793 |
+
|
7794 |
+
###################################################################################
|
7795 |
+
|
7796 |
+
def resize_matrix(matrix, new_height, new_width):
|
7797 |
+
old_height = len(matrix)
|
7798 |
+
old_width = len(matrix[0])
|
7799 |
+
resized_matrix = [[0] * new_width for _ in range(new_height)]
|
7800 |
+
|
7801 |
+
for i in range(new_height):
|
7802 |
+
for j in range(new_width):
|
7803 |
+
old_i = i * old_height / new_height
|
7804 |
+
old_j = j * old_width / new_width
|
7805 |
+
|
7806 |
+
value = 0
|
7807 |
+
total_weight = 0
|
7808 |
+
for m in range(-1, 3):
|
7809 |
+
for n in range(-1, 3):
|
7810 |
+
i_m = min(max(int(old_i) + m, 0), old_height - 1)
|
7811 |
+
j_n = min(max(int(old_j) + n, 0), old_width - 1)
|
7812 |
+
|
7813 |
+
if matrix[i_m][j_n] == 0:
|
7814 |
+
continue
|
7815 |
+
|
7816 |
+
weight = cubic_kernel(old_i - i_m) * cubic_kernel(old_j - j_n)
|
7817 |
+
value += matrix[i_m][j_n] * weight
|
7818 |
+
total_weight += weight
|
7819 |
+
|
7820 |
+
if total_weight > 0:
|
7821 |
+
value /= total_weight
|
7822 |
+
|
7823 |
+
resized_matrix[i][j] = int(value > 0.5)
|
7824 |
+
|
7825 |
+
return resized_matrix
|
7826 |
+
|
7827 |
+
###################################################################################
|
7828 |
+
|
7829 |
+
def square_binary_matrix(binary_matrix,
|
7830 |
+
matrix_size=128,
|
7831 |
+
use_fast_squaring=False,
|
7832 |
+
return_plot_points=False
|
7833 |
+
):
|
7834 |
+
|
7835 |
+
if use_fast_squaring:
|
7836 |
+
|
7837 |
+
step = round(len(binary_matrix) / matrix_size)
|
7838 |
+
|
7839 |
+
samples = []
|
7840 |
+
|
7841 |
+
for i in range(0, len(binary_matrix), step):
|
7842 |
+
samples.append(tuple([tuple(d) for d in binary_matrix[i:i+step]]))
|
7843 |
+
|
7844 |
+
resized_matrix = []
|
7845 |
+
|
7846 |
+
zmatrix = [[0] * matrix_size]
|
7847 |
+
|
7848 |
+
for s in samples:
|
7849 |
+
|
7850 |
+
samples_counts = Counter(s).most_common()
|
7851 |
+
|
7852 |
+
best_sample = tuple([0] * matrix_size)
|
7853 |
+
pm = tuple(zmatrix[0])
|
7854 |
+
|
7855 |
+
for sc in samples_counts:
|
7856 |
+
if sc[0] != tuple(zmatrix[0]) and sc[0] != pm:
|
7857 |
+
best_sample = sc[0]
|
7858 |
+
pm = sc[0]
|
7859 |
+
break
|
7860 |
+
|
7861 |
+
pm = sc[0]
|
7862 |
+
|
7863 |
+
resized_matrix.append(list(best_sample))
|
7864 |
+
|
7865 |
+
resized_matrix = resized_matrix[:matrix_size]
|
7866 |
+
resized_matrix += zmatrix * (matrix_size - len(resized_matrix))
|
7867 |
+
|
7868 |
+
else:
|
7869 |
+
resized_matrix = resize_matrix(binary_matrix, matrix_size, matrix_size)
|
7870 |
+
|
7871 |
+
points = [(i, j) for i in range(matrix_size) for j in range(matrix_size) if resized_matrix[i][j] == 1]
|
7872 |
+
|
7873 |
+
if return_plot_points:
|
7874 |
+
return [resized_matrix, points]
|
7875 |
+
|
7876 |
+
else:
|
7877 |
+
return resized_matrix
|
7878 |
+
|
7879 |
+
###################################################################################
|
7880 |
+
|
7881 |
+
def mean(matrix):
|
7882 |
+
return sum(sum(row) for row in matrix) / (len(matrix) * len(matrix[0]))
|
7883 |
+
|
7884 |
+
###################################################################################
|
7885 |
+
|
7886 |
+
def variance(matrix, mean_value):
|
7887 |
+
return sum(sum((element - mean_value) ** 2 for element in row) for row in matrix) / (len(matrix) * len(matrix[0]))
|
7888 |
+
|
7889 |
+
###################################################################################
|
7890 |
+
|
7891 |
+
def covariance(matrix1, matrix2, mean1, mean2):
|
7892 |
+
return sum(sum((matrix1[i][j] - mean1) * (matrix2[i][j] - mean2) for j in range(len(matrix1[0]))) for i in range(len(matrix1))) / (len(matrix1) * len(matrix1[0]))
|
7893 |
+
|
7894 |
+
###################################################################################
|
7895 |
+
|
7896 |
+
def ssim_index(matrix1, matrix2, bit_depth=1):
|
7897 |
+
|
7898 |
+
if len(matrix1) != len(matrix2) and len(matrix1[0]) != len(matrix2[0]):
|
7899 |
+
return -1
|
7900 |
+
|
7901 |
+
K1, K2 = 0.01, 0.03
|
7902 |
+
L = bit_depth
|
7903 |
+
C1 = (K1 * L) ** 2
|
7904 |
+
C2 = (K2 * L) ** 2
|
7905 |
+
|
7906 |
+
mu1 = mean(matrix1)
|
7907 |
+
mu2 = mean(matrix2)
|
7908 |
+
|
7909 |
+
sigma1_sq = variance(matrix1, mu1)
|
7910 |
+
sigma2_sq = variance(matrix2, mu2)
|
7911 |
+
|
7912 |
+
sigma12 = covariance(matrix1, matrix2, mu1, mu2)
|
7913 |
+
|
7914 |
+
ssim = ((2 * mu1 * mu2 + C1) * (2 * sigma12 + C2)) / ((mu1 ** 2 + mu2 ** 2 + C1) * (sigma1_sq + sigma2_sq + C2))
|
7915 |
+
|
7916 |
+
return ssim
|
7917 |
+
|
7918 |
+
###################################################################################
|
7919 |
+
|
7920 |
+
def find_most_similar_matrix(array_of_matrices,
|
7921 |
+
trg_matrix,
|
7922 |
+
matrices_bit_depth=1,
|
7923 |
+
return_most_similar_index=False
|
7924 |
+
):
|
7925 |
+
|
7926 |
+
max_ssim = -float('inf')
|
7927 |
+
most_similar_index = -1
|
7928 |
+
|
7929 |
+
for i, matrix in enumerate(array_of_matrices):
|
7930 |
+
|
7931 |
+
ssim = ssim_index(matrix, trg_matrix, bit_depth=matrices_bit_depth)
|
7932 |
+
|
7933 |
+
if ssim > max_ssim:
|
7934 |
+
max_ssim = ssim
|
7935 |
+
most_similar_index = i
|
7936 |
+
|
7937 |
+
if return_most_similar_index:
|
7938 |
+
return most_similar_index
|
7939 |
+
|
7940 |
+
else:
|
7941 |
+
return array_of_matrices[most_similar_index]
|
7942 |
+
|
7943 |
+
###################################################################################
|
7944 |
+
|
7945 |
+
def chord_to_pchord(chord):
|
7946 |
+
|
7947 |
+
pchord = []
|
7948 |
+
|
7949 |
+
for cc in chord:
|
7950 |
+
if cc[3] != 9:
|
7951 |
+
pchord.append(cc[4])
|
7952 |
+
|
7953 |
+
return pchord
|
7954 |
+
|
7955 |
+
###################################################################################
|
7956 |
+
|
7957 |
+
def summarize_escore_notes(escore_notes,
|
7958 |
+
summary_length_in_chords=128,
|
7959 |
+
preserve_timings=True,
|
7960 |
+
preserve_durations=False,
|
7961 |
+
time_threshold=12,
|
7962 |
+
min_sum_chord_len=2,
|
7963 |
+
use_tones_chords=True
|
7964 |
+
):
|
7965 |
+
|
7966 |
+
cscore = chordify_score([d[1:] for d in delta_score_notes(escore_notes)])
|
7967 |
+
|
7968 |
+
summary_length_in_chords = min(len(cscore), summary_length_in_chords)
|
7969 |
+
|
7970 |
+
ltthresh = time_threshold // 2
|
7971 |
+
uttresh = time_threshold * 2
|
7972 |
+
|
7973 |
+
mc_time = Counter([c[0][0] for c in cscore if c[0][2] != 9 and ltthresh < c[0][0] < uttresh]).most_common()[0][0]
|
7974 |
+
|
7975 |
+
pchords = []
|
7976 |
+
|
7977 |
+
for c in cscore:
|
7978 |
+
if use_tones_chords:
|
7979 |
+
pchords.append([c[0][0]] + pitches_to_tones_chord(chord_to_pchord(c)))
|
7980 |
+
|
7981 |
+
else:
|
7982 |
+
pchords.append([c[0][0]] + chord_to_pchord(c))
|
7983 |
+
|
7984 |
+
step = round(len(pchords) / summary_length_in_chords)
|
7985 |
+
|
7986 |
+
samples = []
|
7987 |
+
|
7988 |
+
for i in range(0, len(pchords), step):
|
7989 |
+
samples.append(tuple([tuple(d) for d in pchords[i:i+step]]))
|
7990 |
+
|
7991 |
+
summarized_escore_notes = []
|
7992 |
+
|
7993 |
+
for i, s in enumerate(samples):
|
7994 |
+
|
7995 |
+
best_chord = list([v[0] for v in Counter(s).most_common() if v[0][0] == mc_time and len(v[0]) > min_sum_chord_len])
|
7996 |
+
|
7997 |
+
if not best_chord:
|
7998 |
+
best_chord = list([v[0] for v in Counter(s).most_common() if len(v[0]) > min_sum_chord_len])
|
7999 |
+
|
8000 |
+
if not best_chord:
|
8001 |
+
best_chord = list([Counter(s).most_common()[0][0]])
|
8002 |
+
|
8003 |
+
chord = copy.deepcopy(cscore[[ss for ss in s].index(best_chord[0])+(i*step)])
|
8004 |
+
|
8005 |
+
if preserve_timings:
|
8006 |
+
|
8007 |
+
if not preserve_durations:
|
8008 |
+
|
8009 |
+
if i > 0:
|
8010 |
+
|
8011 |
+
pchord = summarized_escore_notes[-1]
|
8012 |
+
|
8013 |
+
for pc in pchord:
|
8014 |
+
pc[1] = min(pc[1], chord[0][0])
|
8015 |
+
|
8016 |
+
else:
|
8017 |
+
|
8018 |
+
chord[0][0] = 1
|
8019 |
+
|
8020 |
+
for c in chord:
|
8021 |
+
c[1] = 1
|
8022 |
+
|
8023 |
+
summarized_escore_notes.append(chord)
|
8024 |
+
|
8025 |
+
summarized_escore_notes = summarized_escore_notes[:summary_length_in_chords]
|
8026 |
+
|
8027 |
+
return [['note'] + d for d in delta_score_to_abs_score(flatten(summarized_escore_notes), times_idx=0)]
|
8028 |
+
|
8029 |
+
###################################################################################
|
8030 |
+
|
8031 |
+
def compress_patches_in_escore_notes(escore_notes,
|
8032 |
+
num_patches=4,
|
8033 |
+
group_patches=False
|
8034 |
+
):
|
8035 |
+
|
8036 |
+
if num_patches > 4:
|
8037 |
+
n_patches = 4
|
8038 |
+
elif num_patches < 1:
|
8039 |
+
n_patches = 1
|
8040 |
+
else:
|
8041 |
+
n_patches = num_patches
|
8042 |
+
|
8043 |
+
if group_patches:
|
8044 |
+
patches_set = sorted(set([e[6] for e in c]))
|
8045 |
+
trg_patch_list = []
|
8046 |
+
seen = []
|
8047 |
+
for p in patches_set:
|
8048 |
+
if p // 8 not in seen:
|
8049 |
+
trg_patch_list.append(p)
|
8050 |
+
seen.append(p // 8)
|
8051 |
+
|
8052 |
+
trg_patch_list = sorted(trg_patch_list)
|
8053 |
+
|
8054 |
+
else:
|
8055 |
+
trg_patch_list = sorted(set([e[6] for e in c]))
|
8056 |
+
|
8057 |
+
if 128 in trg_patch_list and n_patches > 1:
|
8058 |
+
trg_patch_list = trg_patch_list[:n_patches-1] + [128]
|
8059 |
+
else:
|
8060 |
+
trg_patch_list = trg_patch_list[:n_patches]
|
8061 |
+
|
8062 |
+
new_escore_notes = []
|
8063 |
+
|
8064 |
+
for e in escore_notes:
|
8065 |
+
if e[6] in trg_patch_list:
|
8066 |
+
new_escore_notes.append(e)
|
8067 |
+
|
8068 |
+
return new_escore_notes
|
8069 |
+
|
8070 |
+
###################################################################################
|
8071 |
+
|
8072 |
+
def compress_patches_in_escore_notes_chords(escore_notes,
|
8073 |
+
max_num_patches_per_chord=4,
|
8074 |
+
group_patches=True,
|
8075 |
+
root_grouped_patches=False
|
8076 |
+
):
|
8077 |
+
|
8078 |
+
if max_num_patches_per_chord > 4:
|
8079 |
+
n_patches = 4
|
8080 |
+
elif max_num_patches_per_chord < 1:
|
8081 |
+
n_patches = 1
|
8082 |
+
else:
|
8083 |
+
n_patches = max_num_patches_per_chord
|
8084 |
+
|
8085 |
+
cscore = chordify_score([1000, sorted(escore_notes, key=lambda x: (x[1], x[6]))])
|
8086 |
+
|
8087 |
+
new_escore_notes = []
|
8088 |
+
|
8089 |
+
for c in cscore:
|
8090 |
+
|
8091 |
+
if group_patches:
|
8092 |
+
patches_set = sorted(set([e[6] for e in c]))
|
8093 |
+
trg_patch_list = []
|
8094 |
+
seen = []
|
8095 |
+
for p in patches_set:
|
8096 |
+
if p // 8 not in seen:
|
8097 |
+
trg_patch_list.append(p)
|
8098 |
+
seen.append(p // 8)
|
8099 |
+
|
8100 |
+
trg_patch_list = sorted(trg_patch_list)
|
8101 |
+
|
8102 |
+
else:
|
8103 |
+
trg_patch_list = sorted(set([e[6] for e in c]))
|
8104 |
+
|
8105 |
+
if 128 in trg_patch_list and n_patches > 1:
|
8106 |
+
trg_patch_list = trg_patch_list[:n_patches-1] + [128]
|
8107 |
+
else:
|
8108 |
+
trg_patch_list = trg_patch_list[:n_patches]
|
8109 |
+
|
8110 |
+
for ccc in c:
|
8111 |
+
|
8112 |
+
cc = copy.deepcopy(ccc)
|
8113 |
+
|
8114 |
+
if group_patches:
|
8115 |
+
if cc[6] // 8 in [t // 8 for t in trg_patch_list]:
|
8116 |
+
if root_grouped_patches:
|
8117 |
+
cc[6] = (cc[6] // 8) * 8
|
8118 |
+
new_escore_notes.append(cc)
|
8119 |
+
|
8120 |
+
else:
|
8121 |
+
if cc[6] in trg_patch_list:
|
8122 |
+
new_escore_notes.append(cc)
|
8123 |
+
|
8124 |
+
return new_escore_notes
|
8125 |
+
|
8126 |
+
###################################################################################
|
8127 |
+
|
8128 |
+
def escore_notes_to_image_matrix(escore_notes,
|
8129 |
+
num_img_channels=3,
|
8130 |
+
filter_out_zero_rows=False,
|
8131 |
+
filter_out_duplicate_rows=False,
|
8132 |
+
flip_matrix=False,
|
8133 |
+
reverse_matrix=False
|
8134 |
+
):
|
8135 |
+
|
8136 |
+
escore_notes = sorted(escore_notes, key=lambda x: (x[1], x[6]))
|
8137 |
+
|
8138 |
+
if num_img_channels > 1:
|
8139 |
+
n_mat_channels = 3
|
8140 |
+
else:
|
8141 |
+
n_mat_channels = 1
|
8142 |
+
|
8143 |
+
if escore_notes:
|
8144 |
+
last_time = escore_notes[-1][1]
|
8145 |
+
last_notes = [e for e in escore_notes if e[1] == last_time]
|
8146 |
+
max_last_dur = max([e[2] for e in last_notes])
|
8147 |
+
|
8148 |
+
time_range = last_time+max_last_dur
|
8149 |
+
|
8150 |
+
escore_matrix = []
|
8151 |
+
|
8152 |
+
escore_matrix = [[0] * 128 for _ in range(time_range)]
|
8153 |
+
|
8154 |
+
for note in escore_notes:
|
8155 |
+
|
8156 |
+
etype, time, duration, chan, pitch, velocity, pat = note
|
8157 |
+
|
8158 |
+
time = max(0, time)
|
8159 |
+
duration = max(2, duration)
|
8160 |
+
chan = max(0, min(15, chan))
|
8161 |
+
pitch = max(0, min(127, pitch))
|
8162 |
+
velocity = max(0, min(127, velocity))
|
8163 |
+
patch = max(0, min(128, pat))
|
8164 |
+
|
8165 |
+
if chan != 9:
|
8166 |
+
pat = patch + 128
|
8167 |
+
else:
|
8168 |
+
pat = 127
|
8169 |
+
|
8170 |
+
seen_pats = []
|
8171 |
+
|
8172 |
+
for t in range(time, min(time + duration, time_range)):
|
8173 |
+
|
8174 |
+
mat_value = escore_matrix[t][pitch]
|
8175 |
+
|
8176 |
+
mat_value_0 = (mat_value // (256 * 256)) % 256
|
8177 |
+
mat_value_1 = (mat_value // 256) % 256
|
8178 |
+
|
8179 |
+
cur_num_chans = 0
|
8180 |
+
|
8181 |
+
if 0 < mat_value < 256 and pat not in seen_pats:
|
8182 |
+
cur_num_chans = 1
|
8183 |
+
elif 256 < mat_value < (256 * 256) and pat not in seen_pats:
|
8184 |
+
cur_num_chans = 2
|
8185 |
+
|
8186 |
+
if cur_num_chans < n_mat_channels:
|
8187 |
+
|
8188 |
+
if n_mat_channels == 1:
|
8189 |
+
|
8190 |
+
escore_matrix[t][pitch] = pat
|
8191 |
+
seen_pats.append(pat)
|
8192 |
+
|
8193 |
+
elif n_mat_channels == 3:
|
8194 |
+
|
8195 |
+
if cur_num_chans == 0:
|
8196 |
+
escore_matrix[t][pitch] = pat
|
8197 |
+
seen_pats.append(pat)
|
8198 |
+
elif cur_num_chans == 1:
|
8199 |
+
escore_matrix[t][pitch] = (256 * 256 * mat_value_0) + (256 * pat)
|
8200 |
+
seen_pats.append(pat)
|
8201 |
+
elif cur_num_chans == 2:
|
8202 |
+
escore_matrix[t][pitch] = (256 * 256 * mat_value_0) + (256 * mat_value_1) + pat
|
8203 |
+
seen_pats.append(pat)
|
8204 |
+
|
8205 |
+
if filter_out_zero_rows:
|
8206 |
+
escore_matrix = [e for e in escore_matrix if sum(e) != 0]
|
8207 |
+
|
8208 |
+
if filter_out_duplicate_rows:
|
8209 |
+
|
8210 |
+
dd_escore_matrix = []
|
8211 |
+
|
8212 |
+
pr = [-1] * 128
|
8213 |
+
for e in escore_matrix:
|
8214 |
+
if e != pr:
|
8215 |
+
dd_escore_matrix.append(e)
|
8216 |
+
pr = e
|
8217 |
+
|
8218 |
+
escore_matrix = dd_escore_matrix
|
8219 |
+
|
8220 |
+
if flip_matrix:
|
8221 |
+
|
8222 |
+
temp_matrix = []
|
8223 |
+
|
8224 |
+
for m in escore_matrix:
|
8225 |
+
temp_matrix.append(m[::-1])
|
8226 |
+
|
8227 |
+
escore_matrix = temp_matrix
|
8228 |
+
|
8229 |
+
if reverse_matrix:
|
8230 |
+
escore_matrix = escore_matrix[::-1]
|
8231 |
+
|
8232 |
+
return escore_matrix
|
8233 |
+
|
8234 |
+
else:
|
8235 |
+
return None
|
8236 |
+
|
8237 |
+
###################################################################################
|
8238 |
+
|
8239 |
+
def find_value_power(value, number):
|
8240 |
+
return math.floor(math.log(value, number))
|
8241 |
+
|
8242 |
+
###################################################################################
|
8243 |
+
|
8244 |
+
def image_matrix_to_original_escore_notes(image_matrix,
|
8245 |
+
velocity=-1
|
8246 |
+
):
|
8247 |
+
|
8248 |
+
result = []
|
8249 |
+
|
8250 |
+
for j in range(len(image_matrix[0])):
|
8251 |
+
|
8252 |
+
count = 1
|
8253 |
+
|
8254 |
+
for i in range(1, len(image_matrix)):
|
8255 |
+
|
8256 |
+
if image_matrix[i][j] != 0 and image_matrix[i][j] == image_matrix[i-1][j]:
|
8257 |
+
count += 1
|
8258 |
+
|
8259 |
+
else:
|
8260 |
+
if count > 1:
|
8261 |
+
result.append([i-count, count, j, image_matrix[i-1][j]])
|
8262 |
+
|
8263 |
+
else:
|
8264 |
+
if image_matrix[i-1][j] != 0:
|
8265 |
+
result.append([i-count, count, j, image_matrix[i-1][j]])
|
8266 |
+
|
8267 |
+
count = 1
|
8268 |
+
|
8269 |
+
if count > 1:
|
8270 |
+
result.append([len(image_matrix)-count, count, j, image_matrix[-1][j]])
|
8271 |
+
|
8272 |
+
else:
|
8273 |
+
if image_matrix[i-1][j] != 0:
|
8274 |
+
result.append([i-count, count, j, image_matrix[i-1][j]])
|
8275 |
+
|
8276 |
+
result.sort(key=lambda x: (x[0], -x[2]))
|
8277 |
+
|
8278 |
+
original_escore_notes = []
|
8279 |
+
|
8280 |
+
vel = velocity
|
8281 |
+
|
8282 |
+
for r in result:
|
8283 |
+
|
8284 |
+
if velocity == -1:
|
8285 |
+
vel = max(40, r[2])
|
8286 |
+
|
8287 |
+
ptc0 = 0
|
8288 |
+
ptc1 = 0
|
8289 |
+
ptc2 = 0
|
8290 |
+
|
8291 |
+
if find_value_power(r[3], 256) == 0:
|
8292 |
+
ptc0 = r[3] % 256
|
8293 |
+
|
8294 |
+
elif find_value_power(r[3], 256) == 1:
|
8295 |
+
ptc0 = r[3] // 256
|
8296 |
+
ptc1 = (r[3] // 256) % 256
|
8297 |
+
|
8298 |
+
elif find_value_power(r[3], 256) == 2:
|
8299 |
+
ptc0 = (r[3] // 256) // 256
|
8300 |
+
ptc1 = (r[3] // 256) % 256
|
8301 |
+
ptc2 = r[3] % 256
|
8302 |
+
|
8303 |
+
ptcs = [ptc0, ptc1, ptc2]
|
8304 |
+
patches = [p for p in ptcs if p != 0]
|
8305 |
+
|
8306 |
+
for i, p in enumerate(patches):
|
8307 |
+
|
8308 |
+
if p < 128:
|
8309 |
+
patch = 128
|
8310 |
+
channel = 9
|
8311 |
+
|
8312 |
+
else:
|
8313 |
+
patch = p % 128
|
8314 |
+
chan = p // 8
|
8315 |
+
|
8316 |
+
if chan == 9:
|
8317 |
+
chan += 1
|
8318 |
+
|
8319 |
+
channel = min(15, chan)
|
8320 |
+
|
8321 |
+
original_escore_notes.append(['note', r[0], r[1], channel, r[2], vel, patch])
|
8322 |
+
|
8323 |
+
output_score = sorted(original_escore_notes, key=lambda x: (x[1], -x[4], x[6]))
|
8324 |
+
|
8325 |
+
adjust_score_velocities(output_score, 127)
|
8326 |
+
|
8327 |
+
return output_score
|
8328 |
+
|
8329 |
+
###################################################################################
|
8330 |
+
|
8331 |
+
def escore_notes_delta_times(escore_notes,
|
8332 |
+
timings_index=1,
|
8333 |
+
channels_index=3,
|
8334 |
+
omit_zeros=False,
|
8335 |
+
omit_drums=False
|
8336 |
+
):
|
8337 |
+
|
8338 |
+
if omit_drums:
|
8339 |
+
|
8340 |
+
score = [e for e in escore_notes if e[channels_index] != 9]
|
8341 |
+
dtimes = [score[0][timings_index]] + [b[timings_index]-a[timings_index] for a, b in zip(score[:-1], score[1:])]
|
8342 |
+
|
8343 |
+
else:
|
8344 |
+
dtimes = [escore_notes[0][timings_index]] + [b[timings_index]-a[timings_index] for a, b in zip(escore_notes[:-1], escore_notes[1:])]
|
8345 |
+
|
8346 |
+
if omit_zeros:
|
8347 |
+
dtimes = [d for d in dtimes if d != 0]
|
8348 |
+
|
8349 |
+
return dtimes
|
8350 |
+
|
8351 |
+
###################################################################################
|
8352 |
+
|
8353 |
+
def monophonic_check(escore_notes, times_index=1):
|
8354 |
+
return len(escore_notes) == len(set([e[times_index] for e in escore_notes]))
|
8355 |
+
|
8356 |
+
###################################################################################
|
8357 |
+
|
8358 |
+
def count_escore_notes_patches(escore_notes, patches_index=6):
|
8359 |
+
return [list(c) for c in Counter([e[patches_index] for e in escore_notes]).most_common()]
|
8360 |
+
|
8361 |
+
###################################################################################
|
8362 |
+
|
8363 |
+
def escore_notes_medley(list_of_escore_notes,
|
8364 |
+
list_of_labels=None,
|
8365 |
+
pause_time_value=255
|
8366 |
+
):
|
8367 |
+
|
8368 |
+
if list_of_labels is not None:
|
8369 |
+
labels = [str(l) for l in list_of_labels] + ['No label'] * (len(list_of_escore_notes)-len(list_of_labels))
|
8370 |
+
|
8371 |
+
medley = []
|
8372 |
+
|
8373 |
+
time = 0
|
8374 |
+
|
8375 |
+
for i, m in enumerate(list_of_escore_notes):
|
8376 |
+
|
8377 |
+
if list_of_labels is not None:
|
8378 |
+
medley.append(['text_event', time, labels[i]])
|
8379 |
+
|
8380 |
+
pe = m[0]
|
8381 |
+
|
8382 |
+
for mm in m:
|
8383 |
+
|
8384 |
+
time += mm[1] - pe[1]
|
8385 |
+
|
8386 |
+
mmm = copy.deepcopy(mm)
|
8387 |
+
mmm[1] = time
|
8388 |
+
|
8389 |
+
medley.append(mmm)
|
8390 |
+
|
8391 |
+
pe = mm
|
8392 |
+
|
8393 |
+
time += pause_time_value
|
8394 |
+
|
8395 |
+
return medley
|
8396 |
+
|
8397 |
+
###################################################################################
|
8398 |
+
|
8399 |
+
def proportions_counter(list_of_values):
|
8400 |
+
|
8401 |
+
counts = Counter(list_of_values).most_common()
|
8402 |
+
clen = sum([c[1] for c in counts])
|
8403 |
+
|
8404 |
+
return [[c[0], c[1], c[1] / clen] for c in counts]
|
8405 |
+
|
8406 |
+
###################################################################################
|
8407 |
+
|
8408 |
+
def smooth_escore_notes(escore_notes):
|
8409 |
+
|
8410 |
+
values = [e[4] % 24 for e in escore_notes]
|
8411 |
+
|
8412 |
+
smoothed = [values[0]]
|
8413 |
+
|
8414 |
+
for i in range(1, len(values)):
|
8415 |
+
if abs(smoothed[-1] - values[i]) >= 12:
|
8416 |
+
if smoothed[-1] < values[i]:
|
8417 |
+
smoothed.append(values[i] - 12)
|
8418 |
+
else:
|
8419 |
+
smoothed.append(values[i] + 12)
|
8420 |
+
else:
|
8421 |
+
smoothed.append(values[i])
|
8422 |
+
|
8423 |
+
smoothed_score = copy.deepcopy(escore_notes)
|
8424 |
+
|
8425 |
+
for i, e in enumerate(smoothed_score):
|
8426 |
+
esn_octave = escore_notes[i][4] // 12
|
8427 |
+
e[4] = (esn_octave * 12) + smoothed[i]
|
8428 |
+
|
8429 |
+
return smoothed_score
|
8430 |
+
|
8431 |
+
###################################################################################
|
8432 |
+
|
8433 |
+
def add_base_to_escore_notes(escore_notes,
|
8434 |
+
base_octave=2,
|
8435 |
+
base_channel=2,
|
8436 |
+
base_patch=35,
|
8437 |
+
base_max_velocity=120,
|
8438 |
+
return_base=False
|
8439 |
+
):
|
8440 |
+
|
8441 |
+
|
8442 |
+
score = copy.deepcopy(escore_notes)
|
8443 |
+
|
8444 |
+
cscore = chordify_score([1000, score])
|
8445 |
+
|
8446 |
+
base_score = []
|
8447 |
+
|
8448 |
+
for c in cscore:
|
8449 |
+
chord = sorted([e for e in c if e[3] != 9], key=lambda x: x[4], reverse=True)
|
8450 |
+
base_score.append(chord[-1])
|
8451 |
+
|
8452 |
+
base_score = smooth_escore_notes(base_score)
|
8453 |
+
|
8454 |
+
for e in base_score:
|
8455 |
+
e[3] = base_channel
|
8456 |
+
e[4] = (base_octave * 12) + (e[4] % 12)
|
8457 |
+
e[5] = e[4]
|
8458 |
+
e[6] = base_patch
|
8459 |
+
|
8460 |
+
adjust_score_velocities(base_score, base_max_velocity)
|
8461 |
+
|
8462 |
+
if return_base:
|
8463 |
+
final_score = sorted(base_score, key=lambda x: (x[1], -x[4], x[6]))
|
8464 |
+
|
8465 |
+
else:
|
8466 |
+
final_score = sorted(escore_notes + base_score, key=lambda x: (x[1], -x[4], x[6]))
|
8467 |
+
|
8468 |
+
return final_score
|
8469 |
+
|
8470 |
+
###################################################################################
|
8471 |
+
|
8472 |
+
def add_drums_to_escore_notes(escore_notes,
|
8473 |
+
heavy_drums_pitches=[36, 38, 47],
|
8474 |
+
heavy_drums_velocity=110,
|
8475 |
+
light_drums_pitches=[51, 54],
|
8476 |
+
light_drums_velocity=127,
|
8477 |
+
drums_max_velocity=127,
|
8478 |
+
drums_ratio_time_divider=4,
|
8479 |
+
return_drums=False
|
8480 |
+
):
|
8481 |
+
|
8482 |
+
score = copy.deepcopy([e for e in escore_notes if e[3] != 9])
|
8483 |
+
|
8484 |
+
cscore = chordify_score([1000, score])
|
8485 |
+
|
8486 |
+
drums_score = []
|
8487 |
+
|
8488 |
+
for c in cscore:
|
8489 |
+
min_dur = max(1, min([e[2] for e in c]))
|
8490 |
+
if not (c[0][1] % drums_ratio_time_divider):
|
8491 |
+
drum_note = ['note', c[0][1], min_dur, 9, heavy_drums_pitches[c[0][4] % len(heavy_drums_pitches)], heavy_drums_velocity, 128]
|
8492 |
+
else:
|
8493 |
+
drum_note = ['note', c[0][1], min_dur, 9, light_drums_pitches[c[0][4] % len(light_drums_pitches)], light_drums_velocity, 128]
|
8494 |
+
drums_score.append(drum_note)
|
8495 |
+
|
8496 |
+
adjust_score_velocities(drums_score, drums_max_velocity)
|
8497 |
+
|
8498 |
+
if return_drums:
|
8499 |
+
final_score = sorted(drums_score, key=lambda x: (x[1], -x[4], x[6]))
|
8500 |
+
|
8501 |
+
else:
|
8502 |
+
final_score = sorted(score + drums_score, key=lambda x: (x[1], -x[4], x[6]))
|
8503 |
+
|
8504 |
+
return final_score
|
8505 |
+
|
8506 |
+
###################################################################################
|
8507 |
+
|
8508 |
+
def find_pattern_start_indexes(values, pattern):
|
8509 |
+
|
8510 |
+
start_indexes = []
|
8511 |
+
|
8512 |
+
count = 0
|
8513 |
+
|
8514 |
+
for i in range(len(values)- len(pattern)):
|
8515 |
+
chunk = values[i:i+len(pattern)]
|
8516 |
+
|
8517 |
+
if chunk == pattern:
|
8518 |
+
start_indexes.append(i)
|
8519 |
+
|
8520 |
+
return start_indexes
|
8521 |
+
|
8522 |
+
###################################################################################
|
8523 |
+
|
8524 |
+
def escore_notes_lrno_pattern(escore_notes, mode='chords'):
|
8525 |
+
|
8526 |
+
cscore = chordify_score([1000, escore_notes])
|
8527 |
+
|
8528 |
+
checked_cscore = advanced_check_and_fix_chords_in_chordified_score(cscore)
|
8529 |
+
|
8530 |
+
chords_toks = []
|
8531 |
+
chords_idxs = []
|
8532 |
+
|
8533 |
+
for i, c in enumerate(checked_cscore[0]):
|
8534 |
+
|
8535 |
+
pitches = sorted([p[4] for p in c if p[3] != 9], reverse=True)
|
8536 |
+
tchord = pitches_to_tones_chord(pitches)
|
8537 |
+
|
8538 |
+
if tchord:
|
8539 |
+
|
8540 |
+
if mode == 'chords':
|
8541 |
+
token = ALL_CHORDS_FULL.index(tchord)
|
8542 |
+
|
8543 |
+
elif mode == 'high pitches':
|
8544 |
+
token = pitches[0]
|
8545 |
+
|
8546 |
+
elif mode == 'high pitches tones':
|
8547 |
+
token = pitches[0] % 12
|
8548 |
+
|
8549 |
+
else:
|
8550 |
+
token = ALL_CHORDS_FULL.index(tchord)
|
8551 |
+
|
8552 |
+
chords_toks.append(token)
|
8553 |
+
chords_idxs.append(i)
|
8554 |
+
|
8555 |
+
lrno_pats = find_lrno_patterns(chords_toks)
|
8556 |
+
|
8557 |
+
if lrno_pats:
|
8558 |
+
|
8559 |
+
lrno_pattern = list(lrno_pats[0][2])
|
8560 |
+
|
8561 |
+
start_idx = chords_idxs[find_pattern_start_indexes(chords_toks, lrno_pattern)[0]]
|
8562 |
+
end_idx = chords_idxs[start_idx + len(lrno_pattern)]
|
8563 |
+
|
8564 |
+
return recalculate_score_timings(flatten(cscore[start_idx:end_idx]))
|
8565 |
+
|
8566 |
+
else:
|
8567 |
+
return None
|
8568 |
+
|
8569 |
+
###################################################################################
|
8570 |
+
|
8571 |
+
def chordified_score_pitches(chordified_score,
|
8572 |
+
mode='dominant',
|
8573 |
+
return_tones=False,
|
8574 |
+
omit_drums=True,
|
8575 |
+
score_patch=-1,
|
8576 |
+
channels_index=3,
|
8577 |
+
pitches_index=4,
|
8578 |
+
patches_index=6
|
8579 |
+
):
|
8580 |
+
|
8581 |
+
results = []
|
8582 |
+
|
8583 |
+
for c in chordified_score:
|
8584 |
+
|
8585 |
+
if -1 < score_patch < 128:
|
8586 |
+
ptcs = sorted([e[pitches_index] for e in c if e[channels_index] != 9 and e[patches_index] == score_patch], reverse=True)
|
8587 |
+
|
8588 |
+
else:
|
8589 |
+
ptcs = sorted([e[pitches_index] for e in c if e[channels_index] != 9], reverse=True)
|
8590 |
+
|
8591 |
+
if ptcs:
|
8592 |
+
|
8593 |
+
if mode == 'dominant':
|
8594 |
+
|
8595 |
+
mtone = statistics.mode([p % 12 for p in ptcs])
|
8596 |
+
|
8597 |
+
if return_tones:
|
8598 |
+
results.append(mtone)
|
8599 |
+
|
8600 |
+
else:
|
8601 |
+
results.append(sorted(set([p for p in ptcs if p % 12 == mtone]), reverse=True))
|
8602 |
+
|
8603 |
+
elif mode == 'high':
|
8604 |
+
|
8605 |
+
if return_tones:
|
8606 |
+
results.append(ptcs[0] % 12)
|
8607 |
+
|
8608 |
+
else:
|
8609 |
+
results.append([ptcs[0]])
|
8610 |
+
|
8611 |
+
elif mode == 'base':
|
8612 |
+
|
8613 |
+
if return_tones:
|
8614 |
+
results.append(ptcs[-1] % 12)
|
8615 |
+
|
8616 |
+
else:
|
8617 |
+
results.append([ptcs[-1]])
|
8618 |
+
|
8619 |
+
elif mode == 'average':
|
8620 |
+
|
8621 |
+
if return_tones:
|
8622 |
+
results.append(statistics.mean(ptcs) % 12)
|
8623 |
+
|
8624 |
+
else:
|
8625 |
+
results.append([statistics.mean(ptcs)])
|
8626 |
+
|
8627 |
+
else:
|
8628 |
+
|
8629 |
+
mtone = statistics.mode([p % 12 for p in ptcs])
|
8630 |
+
|
8631 |
+
if return_tones:
|
8632 |
+
results.append(mtone)
|
8633 |
+
|
8634 |
+
else:
|
8635 |
+
results.append(sorted(set([p for p in ptcs if p % 12 == mtone]), reverse=True))
|
8636 |
+
|
8637 |
+
else:
|
8638 |
+
|
8639 |
+
if not omit_drums:
|
8640 |
+
|
8641 |
+
if return_tones:
|
8642 |
+
results.append(-1)
|
8643 |
+
|
8644 |
+
else:
|
8645 |
+
results.append([-1])
|
8646 |
+
|
8647 |
+
return results
|
8648 |
+
|
8649 |
+
###################################################################################
|
8650 |
+
|
8651 |
+
def escore_notes_times_tones(escore_notes,
|
8652 |
+
tones_mode='dominant',
|
8653 |
+
return_abs_times=True,
|
8654 |
+
omit_drums=False
|
8655 |
+
):
|
8656 |
+
|
8657 |
+
cscore = chordify_score([1000, escore_notes])
|
8658 |
+
|
8659 |
+
tones = chordified_score_pitches(cscore, return_tones=True, mode=tones_mode, omit_drums=omit_drums)
|
8660 |
+
|
8661 |
+
if return_abs_times:
|
8662 |
+
times = sorted([c[0][1] for c in cscore])
|
8663 |
+
|
8664 |
+
else:
|
8665 |
+
times = escore_notes_delta_times(escore_notes, omit_zeros=True, omit_drums=omit_drums)
|
8666 |
+
|
8667 |
+
if len(times) != len(tones):
|
8668 |
+
times = [0] + times
|
8669 |
+
|
8670 |
+
return [[t, to] for t, to in zip(times, tones)]
|
8671 |
+
|
8672 |
+
###################################################################################
|
8673 |
+
|
8674 |
+
def escore_notes_middle(escore_notes,
|
8675 |
+
length=10,
|
8676 |
+
use_chords=True
|
8677 |
+
):
|
8678 |
+
|
8679 |
+
if use_chords:
|
8680 |
+
score = chordify_score([1000, escore_notes])
|
8681 |
+
|
8682 |
+
else:
|
8683 |
+
score = escore_notes
|
8684 |
+
|
8685 |
+
middle_idx = len(score) // 2
|
8686 |
+
|
8687 |
+
slen = min(len(score) // 2, length // 2)
|
8688 |
+
|
8689 |
+
start_idx = middle_idx - slen
|
8690 |
+
end_idx = middle_idx + slen
|
8691 |
+
|
8692 |
+
if use_chords:
|
8693 |
+
return flatten(score[start_idx:end_idx])
|
8694 |
+
|
8695 |
+
else:
|
8696 |
+
return score[start_idx:end_idx]
|
8697 |
+
|
8698 |
+
###################################################################################
|
8699 |
+
|
8700 |
+
ALL_CHORDS_FULL = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 6],
|
8701 |
+
[0, 3, 6, 9], [0, 3, 6, 10], [0, 3, 7], [0, 3, 7, 10], [0, 3, 8], [0, 3, 9],
|
8702 |
+
[0, 3, 10], [0, 4], [0, 4, 6], [0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7],
|
8703 |
+
[0, 4, 7, 10], [0, 4, 8], [0, 4, 9], [0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9],
|
8704 |
+
[0, 5, 10], [0, 6], [0, 6, 9], [0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9],
|
8705 |
+
[0, 10], [1], [1, 4], [1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11],
|
8706 |
+
[1, 4, 7], [1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9],
|
8707 |
+
[1, 4, 10], [1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9],
|
8708 |
+
[1, 5, 10], [1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7],
|
8709 |
+
[1, 7, 10], [1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2],
|
8710 |
+
[2, 5], [2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6],
|
8711 |
+
[2, 6, 9], [2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8],
|
8712 |
+
[2, 8, 11], [2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11],
|
8713 |
+
[3, 5, 9], [3, 5, 10], [3, 5, 11], [3, 6], [3, 6, 9], [3, 6, 10], [3, 6, 11],
|
8714 |
+
[3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11], [3, 9], [3, 10], [3, 11],
|
8715 |
+
[4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11], [4, 7], [4, 7, 10], [4, 7, 11],
|
8716 |
+
[4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11], [5], [5, 8], [5, 8, 11], [5, 9],
|
8717 |
+
[5, 10], [5, 11], [6], [6, 9], [6, 10], [6, 11], [7], [7, 10], [7, 11], [8],
|
8718 |
+
[8, 11], [9], [10], [11]]
|
8719 |
+
|
8720 |
+
###################################################################################
|
8721 |
+
#
|
8722 |
+
# This is the end of the TMIDI X Python module
|
8723 |
+
#
|
8724 |
###################################################################################
|