Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -19,41 +19,7 @@ import TMIDIX
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
in_space = os.getenv("SYSTEM") == "spaces"
|
22 |
-
|
23 |
-
# =================================================================================================
|
24 |
-
|
25 |
-
@spaces.GPU
|
26 |
-
def generate_drums(notes_times,
|
27 |
-
max_drums_limit = 8,
|
28 |
-
num_memory_tokens = 4096,
|
29 |
-
temperature=0.9):
|
30 |
-
|
31 |
-
ctx = torch.amp.autocast(device_type='cuda', dtype=torch.float16)
|
32 |
-
|
33 |
-
x = torch.tensor([notes_times] * 1, dtype=torch.long, device='cuda')
|
34 |
-
|
35 |
-
o = 128
|
36 |
-
|
37 |
-
ncount = 0
|
38 |
-
|
39 |
-
while o > 127 and ncount < max_drums_limit:
|
40 |
-
with ctx:
|
41 |
-
out = model.generate(x[-num_memory_tokens:],
|
42 |
-
1,
|
43 |
-
temperature=temperature,
|
44 |
-
return_prime=False,
|
45 |
-
verbose=False)
|
46 |
-
|
47 |
-
o = out.tolist()[0][0]
|
48 |
-
|
49 |
-
if 256 <= o < 384:
|
50 |
-
ncount += 1
|
51 |
-
|
52 |
-
if o > 127:
|
53 |
-
x = torch.cat((x, out), 1)
|
54 |
-
|
55 |
-
return x.tolist()[0][len(notes_times):]
|
56 |
-
|
57 |
# =================================================================================================
|
58 |
|
59 |
@spaces.GPU
|
@@ -150,15 +116,38 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
150 |
|
151 |
output = []
|
152 |
|
|
|
|
|
|
|
|
|
153 |
for c in comp_times[:input_num_tokens]:
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
print('=' * 70)
|
164 |
print('Done!')
|
|
|
19 |
import matplotlib.pyplot as plt
|
20 |
|
21 |
in_space = os.getenv("SYSTEM") == "spaces"
|
22 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# =================================================================================================
|
24 |
|
25 |
@spaces.GPU
|
|
|
116 |
|
117 |
output = []
|
118 |
|
119 |
+
temperature=0.9,
|
120 |
+
max_drums_limit=8,
|
121 |
+
num_memory_tokens=4096
|
122 |
+
|
123 |
for c in comp_times[:input_num_tokens]:
|
124 |
+
output.append(c)
|
125 |
+
|
126 |
+
x = torch.tensor([output] * 1, dtype=torch.long, device=DEVICE)
|
127 |
+
|
128 |
+
o = 128
|
129 |
+
|
130 |
+
ncount = 0
|
131 |
+
|
132 |
+
while o > 127 and ncount < max_drums_limit:
|
133 |
+
with ctx:
|
134 |
+
out = model.generate(x[-num_memory_tokens:],
|
135 |
+
1,
|
136 |
+
temperature=temperature,
|
137 |
+
return_prime=False,
|
138 |
+
verbose=False)
|
139 |
+
|
140 |
+
o = out.tolist()[0][0]
|
141 |
+
|
142 |
+
if 256 <= o < 384:
|
143 |
+
ncount += 1
|
144 |
+
|
145 |
+
if o > 127:
|
146 |
+
x = torch.cat((x, out), 1)
|
147 |
+
|
148 |
+
x_output = x.tolist()[0][len(notes_times):]
|
149 |
+
|
150 |
+
output.extend(x_output1)
|
151 |
|
152 |
print('=' * 70)
|
153 |
print('Done!')
|