Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -117,7 +117,7 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
117 |
output = []
|
118 |
|
119 |
temperature=0.9
|
120 |
-
max_drums_limit=
|
121 |
num_memory_tokens=4096
|
122 |
|
123 |
for c in comp_times[:input_num_tokens]:
|
@@ -128,8 +128,11 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
128 |
o = 128
|
129 |
|
130 |
ncount = 0
|
|
|
|
|
|
|
131 |
|
132 |
-
while o > 127 and ncount < max_drums_limit:
|
133 |
with ctx:
|
134 |
out = model.generate(x[-num_memory_tokens:],
|
135 |
1,
|
@@ -138,11 +141,15 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
138 |
verbose=False)
|
139 |
|
140 |
o = out.tolist()[0][0]
|
|
|
|
|
|
|
|
|
141 |
|
142 |
if 256 <= o < 384:
|
143 |
ncount += 1
|
144 |
|
145 |
-
if o > 127:
|
146 |
x = torch.cat((x, out), 1)
|
147 |
|
148 |
x_output = x.tolist()[0][len(output):]
|
@@ -201,10 +208,12 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
201 |
pitch = (ss-256)
|
202 |
|
203 |
if 384 <= ss < 393:
|
|
|
|
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
|
209 |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
210 |
output_signature = 'Ultimate Drums Transformer',
|
@@ -248,8 +257,6 @@ def GenerateDrums(input_midi, input_num_tokens):
|
|
248 |
print('-' * 70)
|
249 |
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
250 |
|
251 |
-
print([output_midi_title, output_midi_summary, output_midi, output_audio, output_plot])
|
252 |
-
|
253 |
return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]
|
254 |
|
255 |
# =================================================================================================
|
|
|
117 |
output = []
|
118 |
|
119 |
temperature=0.9
|
120 |
+
max_drums_limit=4
|
121 |
num_memory_tokens=4096
|
122 |
|
123 |
for c in comp_times[:input_num_tokens]:
|
|
|
128 |
o = 128
|
129 |
|
130 |
ncount = 0
|
131 |
+
|
132 |
+
time = 0
|
133 |
+
ntime = output[-1]
|
134 |
|
135 |
+
while o > 127 and ncount < max_drums_limit and time < ntime:
|
136 |
with ctx:
|
137 |
out = model.generate(x[-num_memory_tokens:],
|
138 |
1,
|
|
|
141 |
verbose=False)
|
142 |
|
143 |
o = out.tolist()[0][0]
|
144 |
+
|
145 |
+
if 128 <= o < 256:
|
146 |
+
time += (o-128)
|
147 |
+
ncount = 0
|
148 |
|
149 |
if 256 <= o < 384:
|
150 |
ncount += 1
|
151 |
|
152 |
+
if o > 127 and time < ntime:
|
153 |
x = torch.cat((x, out), 1)
|
154 |
|
155 |
x_output = x.tolist()[0][len(output):]
|
|
|
208 |
pitch = (ss-256)
|
209 |
|
210 |
if 384 <= ss < 393:
|
211 |
+
|
212 |
+
if pitch != 0:
|
213 |
|
214 |
+
vel = (ss-384) * 15
|
215 |
+
|
216 |
+
song_f.append(['note', dtime, dur, 9, pitch, vel, 128])
|
217 |
|
218 |
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
|
219 |
output_signature = 'Ultimate Drums Transformer',
|
|
|
257 |
print('-' * 70)
|
258 |
print('Req execution time:', (reqtime.time() - start_time), 'sec')
|
259 |
|
|
|
|
|
260 |
return [output_midi_title, output_midi_summary, output_midi, output_audio, output_plot]
|
261 |
|
262 |
# =================================================================================================
|