from fastapi import FastAPI, Depends, HTTPException, Query from transformers import AutoModelForCausalLM, AutoTokenizer from typing import List from fastapi.responses import HTMLResponse from fastapi.staticfiles import StaticFiles from pydantic import BaseModel from helper import get_response_from_model app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") class InputData(BaseModel): user_input: str api_key: str @app.get("/", response_class=HTMLResponse) async def read_root(): with open("static/index.html", "r") as f: content = f.read() return HTMLResponse(content=content) # Initialize model and tokenizer # tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat-int4") # model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat-int4").eval() @app.post("/chat/") def chat(input_data: InputData): print("input_data: ", input_data) user_input = input_data.user_input api_key = input_data.api_key # Here you can validate the API key, e.g., check if it exists in your database # If the API key is not valid, raise an HTTPException # if not validate_api_key(api_key): # raise HTTPException(status_code=400, detail="Invalid API key") # Tokenize the user input and get model's response # input_ids = tokenizer.encode(user_input, return_tensors="pt") # output = model.generate(input_ids) # response = tokenizer.decode(output[0], skip_special_tokens=True) response = get_response_from_model(user_input) return {"response": response} # return {"response": f"user input: {input_data.user_input}, api_key: {input_data.api_key}"}