Spaces:
Running
Running
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
from flask import Flask, request, jsonify | |
from threading import Thread | |
app = Flask(__name__) | |
tokenizer = AutoTokenizer.from_pretrained("HuggingFaceH4/zephyr-7b-beta") | |
model = AutoModelForCausalLM.from_pretrained( | |
"HuggingFaceH4/zephyr-7b-beta", | |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32, | |
device_map="auto" | |
) | |
def chat(): | |
data = request.get_json() | |
question = data.get("question", "") | |
prompt = f"Eres BITER, un mentor experto en negocios. Siempre respondes en español con consejos breves y útiles.\nUsuario: {question}\nBITER:" | |
inputs = tokenizer(prompt, return_tensors="pt").to(model.device) | |
outputs = model.generate(**inputs, max_new_tokens=200) | |
response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
respuesta_final = response.split("BITER:")[-1].strip() | |
return jsonify({"choices": [{"message": {"content": respuesta_final}}]}) | |
def run(): | |
app.run(host='0.0.0.0', port=7860) | |
Thread(target=run).start() | |