Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,94 @@
|
|
1 |
-
import torch
|
2 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
from flask import Flask, request, jsonify
|
4 |
-
from
|
|
|
|
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
)
|
14 |
-
|
15 |
-
@app.route("/api/chat", methods=["POST"])
|
16 |
-
def chat():
|
17 |
-
data = request.get_json()
|
18 |
-
question = data.get("question", "")
|
19 |
-
|
20 |
-
prompt = f"""Eres BITER, un mentor experto en negocios con mentalidad de CEO. Respondes SIEMPRE en espa帽ol y ayudas a emprendedores a tomar decisiones r谩pidas, inteligentes y estrat茅gicas.
|
21 |
-
|
22 |
-
Tu estilo es directo, profesional y humano. Tus respuestas son claras, realistas, y con visi贸n pr谩ctica. Nunca usas tecnicismos innecesarios. A veces puedes ser exigente si la idea no est谩 bien pensada, pero siempre propones formas de mejorarla.
|
23 |
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
respuesta_final = response.split("BITER:")[-1].strip()
|
34 |
-
|
35 |
-
return jsonify({"choices": [{"message": {"content": respuesta_final}}]})
|
36 |
|
37 |
-
|
38 |
-
|
|
|
|
|
39 |
|
40 |
-
Thread(target=run).start()
|
|
|
|
|
|
|
1 |
from flask import Flask, request, jsonify
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
+
import torch
|
4 |
+
import os
|
5 |
|
6 |
app = Flask(__name__)
|
7 |
|
8 |
+
# Configuraci贸n CORS para permitir solicitudes desde tu dominio
|
9 |
+
@app.after_request
|
10 |
+
def after_request(response):
|
11 |
+
response.headers.add('Access-Control-Allow-Origin', 'https://justbyte.es')
|
12 |
+
response.headers.add('Access-Control-Allow-Headers', 'Content-Type')
|
13 |
+
response.headers.add('Access-Control-Allow-Methods', 'POST')
|
14 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
|
16 |
+
# Cargar el modelo y tokenizador (se carga una sola vez al iniciar)
|
17 |
+
@app.before_first_request
|
18 |
+
def load_model():
|
19 |
+
global model, tokenizer
|
20 |
+
|
21 |
+
print("Cargando modelo Zephyr-7B...")
|
22 |
+
|
23 |
+
# Cargar el modelo y tokenizador
|
24 |
+
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
25 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
model_name,
|
28 |
+
torch_dtype=torch.float16, # Usar precisi贸n reducida para ahorrar memoria
|
29 |
+
device_map="auto", # Distribuir el modelo autom谩ticamente
|
30 |
+
load_in_8bit=True # Cuantizaci贸n a 8 bits para reducir uso de memoria
|
31 |
+
)
|
32 |
+
|
33 |
+
print("Modelo cargado correctamente!")
|
34 |
|
35 |
+
# Cargar el prompt desde el archivo
|
36 |
+
def get_system_prompt():
|
37 |
+
with open("prompt.txt", "r", encoding="utf-8") as f:
|
38 |
+
return f.read().strip()
|
39 |
|
40 |
+
@app.route('/generate', methods=['POST'])
|
41 |
+
def generate_response():
|
42 |
+
try:
|
43 |
+
# Obtener la pregunta del usuario
|
44 |
+
data = request.json
|
45 |
+
user_message = data.get('message', '')
|
46 |
+
|
47 |
+
if not user_message:
|
48 |
+
return jsonify({"error": "No se proporcion贸 ninguna pregunta"}), 400
|
49 |
+
|
50 |
+
# Obtener el prompt del sistema
|
51 |
+
system_prompt = get_system_prompt()
|
52 |
+
|
53 |
+
# Crear el formato de conversaci贸n para Zephyr
|
54 |
+
messages = [
|
55 |
+
{"role": "system", "content": system_prompt},
|
56 |
+
{"role": "user", "content": user_message}
|
57 |
+
]
|
58 |
+
|
59 |
+
# Convertir mensajes al formato que espera el modelo
|
60 |
+
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
|
61 |
+
|
62 |
+
# Generar respuesta
|
63 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
|
64 |
+
|
65 |
+
# Configuraci贸n de generaci贸n
|
66 |
+
generation_config = {
|
67 |
+
"max_new_tokens": 500,
|
68 |
+
"temperature": 0.7,
|
69 |
+
"top_p": 0.9,
|
70 |
+
"do_sample": True,
|
71 |
+
"pad_token_id": tokenizer.eos_token_id
|
72 |
+
}
|
73 |
+
|
74 |
+
# Generar respuesta
|
75 |
+
with torch.no_grad():
|
76 |
+
outputs = model.generate(**inputs, **generation_config)
|
77 |
+
|
78 |
+
# Decodificar la respuesta
|
79 |
+
full_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
80 |
+
|
81 |
+
# Extraer solo la respuesta del asistente (despu茅s del 煤ltimo mensaje del usuario)
|
82 |
+
assistant_response = full_response.split("assistant:")[-1].strip()
|
83 |
+
|
84 |
+
return jsonify({"response": assistant_response})
|
85 |
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error: {str(e)}")
|
88 |
+
return jsonify({"error": f"Error al generar respuesta: {str(e)}"}), 500
|
|
|
|
|
|
|
89 |
|
90 |
+
if __name__ == '__main__':
|
91 |
+
# Puerto que Hugging Face Spaces utiliza
|
92 |
+
port = int(os.environ.get('PORT', 7860))
|
93 |
+
app.run(host='0.0.0.0', port=port)
|
94 |
|
|