File size: 2,738 Bytes
c08abba b4c29e6 af0f401 c08abba b4c29e6 e1517ae c08abba af0f401 c08abba af0f401 e1517ae f65533b c08abba b4c29e6 c08abba e1517ae c08abba b4c29e6 c08abba af0f401 c08abba b4c29e6 c08abba af0f401 c08abba e4efe74 b4c29e6 e4efe74 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 |
import json
import os
from datetime import datetime, timezone
import gradio as gr
from src.display.formatting import styled_error, styled_message
from src.envs import API, EVAL_REQUESTS_PATH, QUEUE_REPO
def add_new_eval(model: str, weight_type: str, gguf_filename=None):
user_name = ""
model_path = model
if "/" in model:
user_name = model.split("/")[0]
model_path = model.split("/")[1]
current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")
# Is the model info correctly filled?
try:
model_info = API.model_info(repo_id=model, revision='main')
except Exception:
return styled_error("Could not get your model information.")
if weight_type == "safetensors":
if gguf_filename:
return styled_error("GGUF filename should not be provided when using safetensors.")
# Seems good, creating the eval
print("Adding new eval")
eval_entry = {
"model": model,
"weight_type": weight_type,
"gguf_filename": gguf_filename,
"status": "PENDING",
"submitted_time": current_time,
}
print("Creating eval file")
OUT_DIR = f"{EVAL_REQUESTS_PATH}/{user_name}"
os.makedirs(OUT_DIR, exist_ok=True)
out_path = f"{OUT_DIR}/{model_path}_eval_request_{current_time}.json"
with open(out_path, "w") as f:
f.write(json.dumps(eval_entry))
print("Uploading eval file")
API.upload_file(
path_or_fileobj=out_path,
path_in_repo=out_path.split("eval-queue/")[1],
repo_id=QUEUE_REPO,
repo_type="dataset",
commit_message=f"Add {model} to eval queue",
)
# Remove the local file
os.remove(out_path)
return styled_message(
"Your request has been submitted to the evaluation queue!\nPlease wait for up to five minutes for the model to show in the PENDING list."
)
def update_gguf_input(weight_type):
return gr.update(interactive=weight_type != "safetensors")
# Gradio interface
with gr.Blocks() as demo:
model_input = gr.Textbox(label="Model")
weight_type_input = gr.Dropdown(
label="Weight Type",
choices=["default", "safetensors", "other"],
value="default",
interactive=True
)
gguf_filename_input = gr.Textbox(label="GGUF Filename", interactive=True)
submit_btn = gr.Button("Submit")
output = gr.Markdown()
# Update gguf_filename input based on weight_type selection
weight_type_input.change(fn=update_gguf_input, inputs=weight_type_input, outputs=gguf_filename_input)
submit_btn.click(
fn=add_new_eval,
inputs=[model_input, weight_type_input, gguf_filename_input],
outputs=output
)
demo.launch()
|