File size: 3,680 Bytes
c08abba
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
af0f401
 
 
 
c08abba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, Tasks

@dataclass
class EvalResult:
    eval_name: str # org_model_date (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    results: dict
    date: str = "" # submission date of request file

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Get model and org
        org_and_model = config.get("model_name", None)
        org_and_model = org_and_model.split("/", 1)

        org = org_and_model[0]
        model = org_and_model[1]
        date = config.get("submitted_time", None)
        result_key = f"{org}_{model}_{date}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:
            task = task.value

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            date=date
        )


    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.model_submission_date.name: self.date,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.average.name: average,
        }

        for task in Tasks:
            data_dict[task.value.col_name] = self.results[task.value.benchmark]

        return data_dict


def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results