File size: 7,146 Bytes
c08abba
 
 
 
 
 
 
 
 
 
78301f0
c08abba
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
af0f401
 
 
 
c08abba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
78301f0
c08abba
 
 
 
78301f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
 
af0f401
c08abba
 
 
 
 
 
 
 
 
 
78301f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4861eca
78301f0
 
 
 
 
4861eca
78301f0
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import glob
import json
import math
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, Tasks, Groups

@dataclass
class EvalResult:
    eval_name: str # org_model_date (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    results: dict
    date: str = "" # submission date of request file

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Get model and org
        org_and_model = config.get("model_name", None)
        org_and_model = org_and_model.split("/", 1)

        org = org_and_model[0]
        model = org_and_model[1]
        date = config.get("submitted_time", None)
        result_key = f"{org}_{model}_{date}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Tasks:

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            date=date
        )


    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Tasks)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.model_submission_date.name: self.date,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.average.name: average,
        }

        for task in Tasks:
            data_dict[task.col_name] = self.results[task.benchmark]

        return data_dict




@dataclass
class EvalResultGroup:
    eval_name: str # org_model_date (uid)
    full_model: str # org/model (path on hub)
    org: str 
    model: str
    results: dict
    date: str = "" # submission date of request file

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config")

        # Get model and org
        org_and_model = config.get("model_name", None)
        org_and_model = org_and_model.split("/", 1)

        org = org_and_model[0]
        model = org_and_model[1]
        date = config.get("submitted_time", None)
        result_key = f"{org}_{model}_{date}"
        full_model = "/".join(org_and_model)

        # Extract results available in this file (some results are split in several files)
        results = {}
        for task in Groups:

            # We average all scores of a given metric (not all metrics are present in all files)
            accs = np.array([v.get(task.metric, None) for k, v in data["results"].items() if task.benchmark == k])
            if accs.size == 0 or any([acc is None for acc in accs]):
                continue

            mean_acc = np.mean(accs) * 100.0
            results[task.benchmark] = mean_acc

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            date=date
        )


    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        average = sum([v for v in self.results.values() if v is not None]) / len(Groups)
        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.model_submission_date.name: self.date,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.dummy.name: self.full_model,
            AutoEvalColumn.average.name: average,
        }

        for task in Groups:
            data_dict[task.col_name] = self.results[task.benchmark]

        return data_dict








def get_raw_eval_results(results_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResult.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results




def get_group_eval_results(results_path: str) -> list[EvalResultGroup]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        # Creation of result
        eval_result = EvalResultGroup.init_from_json_file(model_result_filepath)

        # Store results of same eval together
        eval_name = eval_result.eval_name
        eval_results[eval_name] = eval_result

    results = []
    print(eval_results)
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            print("key error")
            continue

    return results