WankioM
commited on
Delete image.py
Browse filesDeleted first long code
- OpenCV/image.py +0 -171
OpenCV/image.py
DELETED
@@ -1,171 +0,0 @@
|
|
1 |
-
from turtle import ycor
|
2 |
-
import numpy as np
|
3 |
-
import png
|
4 |
-
import cv2
|
5 |
-
|
6 |
-
class Image:
|
7 |
-
def __init__(self, x_pixels=0, y_pixels=0, filename=''):
|
8 |
-
# you need to input either filename OR x_pixels, y_pixels, and num_channels
|
9 |
-
self.input_path = 'pyphotoshop-main\input/'
|
10 |
-
self.output_path = 'pyphotoshop-main\output/'
|
11 |
-
|
12 |
-
self.x_pixels = x_pixels
|
13 |
-
self.y_pixels = y_pixels
|
14 |
-
|
15 |
-
self.array = np.zeros((x_pixels, y_pixels))
|
16 |
-
|
17 |
-
|
18 |
-
#Read original image
|
19 |
-
im=cv2.imread(r"Animate\images\flag (1).png")
|
20 |
-
|
21 |
-
|
22 |
-
#Change to 2D array and canny_edges
|
23 |
-
canny_edges=cv2.Canny(image=im, threshold1=100, threshold2=200)
|
24 |
-
|
25 |
-
|
26 |
-
manys=np.random.randint(255, size=(5,5))
|
27 |
-
ones=np.array([[0, 255, 0, 255,0],[ 255, 0, 0, 255, 255],[0, 255, 0, 255, 0],[255, 255, 0, 255, 0],[ 255, 0, 255, 0, 255]])
|
28 |
-
|
29 |
-
cv2.imwrite("ones.png",ones)
|
30 |
-
|
31 |
-
#Try loop through elements in the image matrice:
|
32 |
-
|
33 |
-
#-----------------------------------------------------------------------------------------------------------
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
#Getting the last key in a dictionary
|
39 |
-
def get_last_key(dictionary):
|
40 |
-
for key in dictionary.keys():
|
41 |
-
last_key=key
|
42 |
-
return last_key
|
43 |
-
|
44 |
-
#Get the coord of the key with the white value/255
|
45 |
-
def get_white_key(dictionary):
|
46 |
-
for key,value in dictionary.items():
|
47 |
-
if value==255:
|
48 |
-
white_coord=key
|
49 |
-
return white_coord
|
50 |
-
|
51 |
-
|
52 |
-
# find neighbouring pixel:
|
53 |
-
def get_neighbours(image, x, y, x_pixels, y_pixels, kernel=0):
|
54 |
-
|
55 |
-
neighbour_coords=[
|
56 |
-
[max(0, (x-1)),max(0,(y-1))],
|
57 |
-
[max(0, (x-1)),y],
|
58 |
-
[max(0, (x-1)), min((y_pixels-1),(y+1))],
|
59 |
-
[x,max(0,y-1)],
|
60 |
-
[x,min((y_pixels-1),(y+1))],
|
61 |
-
[min((x_pixels-1),(x+1)),max(0,(y-1))],
|
62 |
-
[min((x_pixels-1),(x+1)),y],
|
63 |
-
[min((x_pixels-1),(x+1)),y+1]
|
64 |
-
] # to finish array kernel....
|
65 |
-
neighbour_coords=np.array(neighbour_coords)
|
66 |
-
print(f"Image pixel is : at {x,y} ")
|
67 |
-
return neighbour_coords
|
68 |
-
|
69 |
-
#find value at neighbour
|
70 |
-
def value_at_neighbour(new_frame,image,coord=[0,0],pixel_count=0):
|
71 |
-
pixel_count+=1
|
72 |
-
print(f"Pixel count is at {pixel_count}")
|
73 |
-
x_pixels, y_pixels=np.shape(image)
|
74 |
-
neighbour_coords=get_neighbours(image, coord[0], coord[1],x_pixels, y_pixels,kernel=0)
|
75 |
-
neighbour_values=[]#empty array with shape of nighbour-co-ords array
|
76 |
-
dict={}
|
77 |
-
|
78 |
-
#Run through coords in neighbours coord list and find their values
|
79 |
-
for coord in neighbour_coords:
|
80 |
-
neighbour_value = image[min(x_pixels-1,coord[0]),min(y_pixels-1,coord[1])]
|
81 |
-
neighbour_values.append(neighbour_value)
|
82 |
-
|
83 |
-
#Changing values back to normal arrays to work with in dict
|
84 |
-
pyneighbour_value=int(neighbour_value)
|
85 |
-
pyz=tuple(coord)
|
86 |
-
dict[pyz]=pyneighbour_value# append to dictionary of neighbour-co-ords
|
87 |
-
print(f"My dict of neighbour coords:values is {dict} and value is {pyneighbour_value} ")#At the end of this for loop, we finally get
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
if pixel_count <25:
|
93 |
-
if 255 in neighbour_values:
|
94 |
-
coord=get_white_key(dict)
|
95 |
-
print(f"\n \n New coordinate in recursive function is {coord} and pixl count{pixel_count}")
|
96 |
-
|
97 |
-
#Append dict of neighbours values to new_frame array
|
98 |
-
for key, value in dict.items():
|
99 |
-
x_index=int(key[0])
|
100 |
-
y_index=int(key[1])
|
101 |
-
new_frame[x_index][y_index]=value
|
102 |
-
|
103 |
-
|
104 |
-
#Convert array with new dict values to np array, then save it a
|
105 |
-
#list of variables that we can cv.write later
|
106 |
-
frames[pixel_count]=new_frame
|
107 |
-
|
108 |
-
|
109 |
-
value_at_neighbour(new_frame, image,coord,pixel_count=pixel_count)
|
110 |
-
|
111 |
-
#if all the values are black and it breaks out of loop
|
112 |
-
#We need to check the next square
|
113 |
-
elif 255 not in neighbour_values:
|
114 |
-
coord=get_last_key(dict)
|
115 |
-
print(f"\n \n Value is 0 so new coord is {coord}")
|
116 |
-
value_at_neighbour(new_frame, image,coord,pixel_count)
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
#Create and write image with path
|
133 |
-
#Create an empty imaage of arrays with 0 and switch the 0 with the white values one by one
|
134 |
-
|
135 |
-
"""
|
136 |
-
That is, if neighbour coord is True
|
137 |
-
If neighbour coord is True, then move to square
|
138 |
-
Divide square by number of frames
|
139 |
-
We need it to pick a square
|
140 |
-
"""
|
141 |
-
|
142 |
-
|
143 |
-
#Initialize frame count
|
144 |
-
frame_count=0
|
145 |
-
|
146 |
-
#So now we have to create a path through the image and create frames
|
147 |
-
def create_path_frames(frames=10) :
|
148 |
-
new_frame=np.zeros(5,5)
|
149 |
-
for i in range(frames): #number of frames
|
150 |
-
frame_count += 1
|
151 |
-
cv2.imwrite(f'new{frame_count}.png',new_frame)
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
new_frame=[[0]*5]*5
|
157 |
-
|
158 |
-
|
159 |
-
frames={}
|
160 |
-
|
161 |
-
value_at_neighbour(new_frame, ones)
|
162 |
-
|
163 |
-
print(len(frames))
|
164 |
-
"""
|
165 |
-
for key, value in frames.items():
|
166 |
-
frame=np.array(value)
|
167 |
-
cv2.imwrite(f'frame{key}.png',frame)
|
168 |
-
"""
|
169 |
-
|
170 |
-
|
171 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|