Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import joblib
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
# Load the saved model
|
5 |
+
gbc = joblib.load('diabetes_model.pkl')
|
6 |
+
|
7 |
+
def prediction(a, b, c, d, e, f, g, h):
|
8 |
+
try:
|
9 |
+
# Create a DataFrame for the new input
|
10 |
+
new_data = [[a, b, c, d, e, f, g, h]]
|
11 |
+
|
12 |
+
# Make a prediction
|
13 |
+
result = gbc.predict(new_data)
|
14 |
+
|
15 |
+
# Print the inputs
|
16 |
+
input_data = {
|
17 |
+
"Pregnancies": a,
|
18 |
+
"Glucose": b,
|
19 |
+
"BloodPressure": c,
|
20 |
+
"SkinThickness": d,
|
21 |
+
"Insulin": e,
|
22 |
+
"BMI": f,
|
23 |
+
"DiabetesPedigreeFunction": g,
|
24 |
+
"Age": h,
|
25 |
+
}
|
26 |
+
|
27 |
+
print("User Input:", input_data) # Print inputs to the console
|
28 |
+
|
29 |
+
# Determine the prediction message
|
30 |
+
if result[0] == 0:
|
31 |
+
prediction_message = "Based on your results, you are not diabetic. Maintain a healthy lifestyle and regular check-ups."
|
32 |
+
else:
|
33 |
+
prediction_message = "Your results indicate that you are diabetic. Please consult with a healthcare professional for further guidance and management."
|
34 |
+
|
35 |
+
# Return both the prediction and the image URL
|
36 |
+
return prediction_message, image_url
|
37 |
+
except Exception as e:
|
38 |
+
return f"Error: {str(e)}", None # Return None for the image in case of error
|
39 |
+
|
40 |
+
# Example values
|
41 |
+
example_inputs = [6, 148.0, 72.0, 35.0, 79.799479, 33.6, 0.627, 50]
|
42 |
+
|
43 |
+
# Image URL (replace this with a direct image URL)
|
44 |
+
image_url = "pngtree-world-diabetes-day-raising-awareness-for-a-healthier-future-png-image_14138135.png"
|
45 |
+
|
46 |
+
# Create the Gradio interface with a soft theme
|
47 |
+
app = gr.Interface(
|
48 |
+
fn=prediction,
|
49 |
+
inputs=[
|
50 |
+
gr.Number(label="Pregnancies", value=example_inputs[0]),
|
51 |
+
gr.Number(label="Glucose", value=example_inputs[1]),
|
52 |
+
gr.Number(label="BloodPressure", value=example_inputs[2]),
|
53 |
+
gr.Number(label="SkinThickness", value=example_inputs[3]),
|
54 |
+
gr.Number(label="Insulin", value=example_inputs[4]),
|
55 |
+
gr.Number(label="BMI", value=example_inputs[5]),
|
56 |
+
gr.Number(label="DiabetesPedigreeFunction", value=example_inputs[6]),
|
57 |
+
gr.Number(label="Age", value=example_inputs[7])
|
58 |
+
],
|
59 |
+
outputs=[gr.Text(label="Prediction"), gr.Image(value=image_url, label="Image", show_label=True)],
|
60 |
+
title="Diabetes Prediction",
|
61 |
+
theme=gr.themes.Soft()
|
62 |
+
)
|
63 |
+
|
64 |
+
# Launch the app
|
65 |
+
app.launch()
|