|
import gradio as gr |
|
import numpy as np |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.preprocessing import image |
|
from PIL import Image |
|
|
|
fixed_image_url = "222.PNG" |
|
|
|
|
|
examples = [ |
|
["Avulsion fracture.jpg", "Avulsion fracture."] |
|
] |
|
|
|
model = load_model("bone_break_classification_model.h5") |
|
|
|
|
|
class_names_dict = { |
|
0: 'Avulsion fracture', |
|
1: 'Comminuted fracture', |
|
2: 'Fracture Dislocation', |
|
3: 'Greenstick fracture', |
|
4: 'Hairline Fracture', |
|
5: 'Imapacted fracture', |
|
6: 'Longitudinal fracture', |
|
7: 'Oblique fracture', |
|
8: 'Pathological fracture', |
|
9: 'Spiral Fracture' |
|
} |
|
|
|
|
|
def predict_image(img_path): |
|
|
|
if img_path is None: |
|
return "Please upload an image.", fixed_image_url |
|
|
|
img = Image.open(img_path) |
|
img = img.resize((256, 256)) |
|
img_array = np.array(img) / 255.0 |
|
img_array = np.expand_dims(img_array, axis=0) |
|
|
|
|
|
prediction = model.predict(img_array) |
|
predicted_class_index = np.argmax(prediction, axis=-1)[0] |
|
predicted_class_name = class_names_dict.get(predicted_class_index, "Unknown Class") |
|
|
|
return predicted_class_name ,fixed_image_url |
|
|
|
|
|
iface = gr.Interface( |
|
fn=predict_image, |
|
inputs=gr.Image(type="filepath", label="Upload an Image"), |
|
outputs=[ |
|
gr.Textbox(label="Prediction"), |
|
gr.Image(label=" Bone Fracture Detection ", value=fixed_image_url) |
|
], |
|
title="Bone Break Classification", |
|
description=( |
|
"Upload an X-ray image, and the model will predict the type of bone break. \n\n" |
|
"Classes Available:\n" |
|
"Avulsion fracture ,\n" |
|
"Comminuted fracture ,\n" |
|
"Fracture Dislocation ,\n" |
|
"Greenstick fracture ,\n" |
|
"Hairline Fracture ,\n" |
|
"Impacted fracture ,\n" |
|
"Longitudinal fracture ,\n" |
|
"Oblique fracture ,\n" |
|
"Pathological fracture ,\n" |
|
"Spiral Fracture ," |
|
), |
|
|
|
theme="ParityError/Interstellar", |
|
examples=examples, |
|
) |
|
|
|
|
|
iface.launch(debug=True) |