Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
from tensorflow.keras.preprocessing import image
|
5 |
+
from PIL import Image
|
6 |
+
# Fixed image URL
|
7 |
+
fixed_image_url = "222.PNG"
|
8 |
+
|
9 |
+
# Example images and their descriptions
|
10 |
+
examples = [
|
11 |
+
["Avulsion fracture.jpg", "Avulsion fracture."]
|
12 |
+
# Load your trained model
|
13 |
+
model = load_model("bone_break_classification_model.h5")
|
14 |
+
|
15 |
+
# Define your class names dictionary
|
16 |
+
class_names_dict = {
|
17 |
+
0: 'Avulsion fracture',
|
18 |
+
1: 'Comminuted fracture',
|
19 |
+
2: 'Fracture Dislocation',
|
20 |
+
3: 'Greenstick fracture',
|
21 |
+
4: 'Hairline Fracture',
|
22 |
+
5: 'Imapacted fracture',
|
23 |
+
6: 'Longitudinal fracture',
|
24 |
+
7: 'Oblique fracture',
|
25 |
+
8: 'Pathological fracture',
|
26 |
+
9: 'Spiral Fracture'
|
27 |
+
}
|
28 |
+
|
29 |
+
def predict_image(img_path):
|
30 |
+
# Load the image using PIL
|
31 |
+
img = Image.open(img_path)
|
32 |
+
img = img.resize((256, 256)) # Resize the image
|
33 |
+
img_array = np.array(img) / 255.0 # Normalize
|
34 |
+
img_array = np.expand_dims(img_array, axis=0) # Add batch dimension
|
35 |
+
|
36 |
+
# Make prediction
|
37 |
+
prediction = model.predict(img_array)
|
38 |
+
predicted_class_index = np.argmax(prediction, axis=-1)[0]
|
39 |
+
predicted_class_name = class_names_dict.get(predicted_class_index, "Unknown Class")
|
40 |
+
|
41 |
+
return predicted_class_name ,fixed_image_url
|
42 |
+
|
43 |
+
# Create Gradio interface
|
44 |
+
iface = gr.Interface(
|
45 |
+
fn=predict_image,
|
46 |
+
inputs=gr.Image(type="filepath", label="Upload an Image"),
|
47 |
+
outputs=[
|
48 |
+
gr.Textbox(label="Prediction"),
|
49 |
+
gr.Image(label=" Bone Fracture Detection ", value=fixed_image_url)
|
50 |
+
],
|
51 |
+
title="Bone Break Classification",
|
52 |
+
description="Upload an X-ray image, and the model will predict the type of bone break.",
|
53 |
+
theme="ParityError/Interstellar",
|
54 |
+
examples=examples,
|
55 |
+
)
|
56 |
+
|
57 |
+
# Launch the interface
|
58 |
+
iface.launch(debug=True)
|