import gradio as gr import numpy as np from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image from PIL import Image # Fixed image URL fixed_image_url = "222.PNG" # Example images and their descriptions examples = [ ["Avulsion fracture.jpg", "Avulsion fracture."] ] # Load your trained model model = load_model("bone_break_classification_model.h5") # Define your class names dictionary class_names_dict = { 0: 'Avulsion fracture', 1: 'Comminuted fracture', 2: 'Fracture Dislocation', 3: 'Greenstick fracture', 4: 'Hairline Fracture', 5: 'Imapacted fracture', 6: 'Longitudinal fracture', 7: 'Oblique fracture', 8: 'Pathological fracture', 9: 'Spiral Fracture' } def predict_image(img_path): # If no image is uploaded, return a message if img_path is None: return "Please upload an image.", fixed_image_url # Load the image using PIL img = Image.open(img_path) img = img.resize((256, 256)) # Resize the image img_array = np.array(img) / 255.0 # Normalize img_array = np.expand_dims(img_array, axis=0) # Add batch dimension # Make prediction prediction = model.predict(img_array) predicted_class_index = np.argmax(prediction, axis=-1)[0] predicted_class_name = class_names_dict.get(predicted_class_index, "Unknown Class") return predicted_class_name ,fixed_image_url # Create Gradio interface iface = gr.Interface( fn=predict_image, inputs=gr.Image(type="filepath", label="Upload an Image"), outputs=[ gr.Textbox(label="Prediction"), gr.Image(label=" Bone Fracture Detection ", value=fixed_image_url) ], title="Bone Break Classification", description=( "Upload an X-ray image, and the model will predict the type of bone break. \n\n" "Classes Available:\n" "Avulsion fracture ,\n" "Comminuted fracture ,\n" "Fracture Dislocation ,\n" "Greenstick fracture ,\n" "Hairline Fracture ,\n" "Impacted fracture ,\n" "Longitudinal fracture ,\n" "Oblique fracture ,\n" "Pathological fracture ,\n" "Spiral Fracture ," ), theme="ParityError/Interstellar", examples=examples, ) # Launch the interface iface.launch(debug=True)