|
import numpy as np |
|
import tensorflow as tf |
|
from tensorflow.keras.preprocessing import image |
|
import gradio as gr |
|
from gradio.themes.base import Base |
|
import cv2 |
|
from tensorflow.keras.models import load_model |
|
model_path = "xray_model.h5" |
|
model = load_model(model_path) |
|
def load_and_prepare_image(image_path): |
|
|
|
img = cv2.imread(image_path) |
|
|
|
img = cv2.resize(img, (256, 256)) |
|
|
|
img = img / 255.0 |
|
|
|
img = np.expand_dims(img, axis=0) |
|
return img |
|
|
|
def predict(image_path): |
|
if image_path is None: |
|
return "Please upload an image.", "How-AI-is-Used-in-Healthcare.png" |
|
|
|
|
|
img = load_and_prepare_image(image_path) |
|
|
|
|
|
prediction = model.predict(img) |
|
|
|
|
|
label = ( |
|
'The X-ray indicates that the patient likely has pneumonia.' |
|
if prediction[0][0] > 0.9 |
|
else 'The X-ray indicates that the patient\'s lungs are normal.' |
|
) |
|
|
|
return label, "How-AI-is-Used-in-Healthcare.png" |
|
|
|
|
|
fixed_image_url = "How-AI-is-Used-in-Healthcare.png" |
|
|
|
|
|
examples = [ |
|
["normal.jpeg", "Normal X-ray image."], |
|
["pne.jpeg", "X-ray image indicating pneumonia."] |
|
] |
|
|
|
iface = gr.Interface( |
|
theme=gr.themes.Soft(), |
|
fn=predict, |
|
inputs=gr.Image(type="filepath", label="Upload Image"), |
|
outputs=[ |
|
gr.Textbox(label="Prediction"), |
|
gr.Image(value=fixed_image_url, label="Always ready to assist!") |
|
], |
|
title="Pneumonia Classification", |
|
description="Please upload a chest X-ray image.", |
|
examples=examples, |
|
) |
|
|
|
iface.launch(share=True) |