Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tensorflow as tf
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
from PIL import Image
|
5 |
+
from tensorflow.keras.models import load_model
|
6 |
+
# Load your trained model and label map
|
7 |
+
path="skinDiseaseDetection (1).h5"
|
8 |
+
model = load_model(path)
|
9 |
+
label_map={0: 'pigmented benign keratosis',
|
10 |
+
1: 'melanoma',
|
11 |
+
2: 'vascular lesion',
|
12 |
+
3: 'actinic keratosis',
|
13 |
+
4: 'squamous cell carcinoma',
|
14 |
+
5: 'basal cell carcinoma',
|
15 |
+
6: 'seborrheic keratosis',
|
16 |
+
7: 'dermatofibroma',
|
17 |
+
8: 'nevus'}
|
18 |
+
|
19 |
+
def predict_image(image):
|
20 |
+
"""
|
21 |
+
Predict the class of an uploaded image of a skin lesion.
|
22 |
+
|
23 |
+
Parameters:
|
24 |
+
- image: The uploaded image in PIL format.
|
25 |
+
|
26 |
+
Returns:
|
27 |
+
- predicted_class: The name of the predicted class or an error message.
|
28 |
+
- confidence: The confidence score of the prediction (0 to 1) or None.
|
29 |
+
- prediction_type: The type of prediction or an error message.
|
30 |
+
"""
|
31 |
+
if image is None:
|
32 |
+
return "Please upload an image.", None, "No Diagnosis"
|
33 |
+
|
34 |
+
# Preprocess the image
|
35 |
+
image = image.resize((100, 75)) # Resize to model's expected input size
|
36 |
+
image_array = np.asarray(image)
|
37 |
+
image_array = (image_array - np.mean(image_array)) / np.std(image_array) # Normalize
|
38 |
+
image_array = np.expand_dims(image_array, axis=0) # Add batch dimension
|
39 |
+
|
40 |
+
# Make prediction using the loaded model
|
41 |
+
predictions = model.predict(image_array)
|
42 |
+
predicted_index = np.argmax(predictions, axis=1)[0]
|
43 |
+
confidence = np.max(predictions)
|
44 |
+
predicted_class = label_map[predicted_index]
|
45 |
+
|
46 |
+
# Define classes for benign and malignant lesions
|
47 |
+
benign_classes = [
|
48 |
+
'pigmented benign keratosis',
|
49 |
+
'vascular lesion',
|
50 |
+
'actinic keratosis',
|
51 |
+
'seborrheic keratosis',
|
52 |
+
'dermatofibroma',
|
53 |
+
'nevus'
|
54 |
+
]
|
55 |
+
malignant_classes = [
|
56 |
+
'melanoma',
|
57 |
+
'squamous cell carcinoma',
|
58 |
+
'basal cell carcinoma'
|
59 |
+
]
|
60 |
+
|
61 |
+
# Determine the type of prediction
|
62 |
+
if predicted_class in benign_classes:
|
63 |
+
prediction_type = 'Benign Neoplasm'
|
64 |
+
elif predicted_class in malignant_classes:
|
65 |
+
prediction_type = 'Malignant Neoplasm'
|
66 |
+
else:
|
67 |
+
prediction_type = 'Unknown Neoplasm'
|
68 |
+
|
69 |
+
return predicted_class, float(f"{confidence:.2f}"), prediction_type # Format confidence here
|
70 |
+
|
71 |
+
# Example images and their descriptions
|
72 |
+
examples = [
|
73 |
+
["/content/sample_data/bcc.jpg"],
|
74 |
+
["/content/sample_data/d.jpg"],
|
75 |
+
["/content/sample_data/m.PNG"],
|
76 |
+
["/content/sample_data/sck.jpg"]
|
77 |
+
]
|
78 |
+
|
79 |
+
# Example images and their descriptions
|
80 |
+
examples = [
|
81 |
+
["/content/sample_data/bcc.jpg"],
|
82 |
+
["/content/sample_data/d.jpg"],
|
83 |
+
["/content/sample_data/m.PNG"],
|
84 |
+
["/content/sample_data/sck.jpg"]
|
85 |
+
]
|
86 |
+
|
87 |
+
# Set up the Gradio interface
|
88 |
+
iface = gr.Interface(
|
89 |
+
fn=predict_image,
|
90 |
+
inputs=gr.Image(type="pil", label="Upload Skin Lesion Image"),
|
91 |
+
outputs=[
|
92 |
+
gr.Label(label="Predicted Class"),
|
93 |
+
gr.Number(label="Confidence Score", precision=2),
|
94 |
+
gr.Textbox(label="Diagnosis Type", interactive=False)
|
95 |
+
],
|
96 |
+
title="Skin Cancer Image Classification",
|
97 |
+
description="Upload an image of a skin lesion to predict its type and determine if the diagnosis is Benign or Malignant.",
|
98 |
+
theme="default", # Use a valid theme like "default" or "compact"
|
99 |
+
allow_flagging="never", # Optional: Disable flagging for a cleaner UI
|
100 |
+
examples=examples ,
|
101 |
+
css="""
|
102 |
+
.gradio-container {
|
103 |
+
font-family: 'Arial', sans-serif;
|
104 |
+
background-color: #ddebf7;
|
105 |
+
border-radius: 10px;
|
106 |
+
padding: 20px;
|
107 |
+
}
|
108 |
+
.gr-button {
|
109 |
+
background-color: #4CAF50;
|
110 |
+
color: white;
|
111 |
+
}
|
112 |
+
.gr-image {
|
113 |
+
border: 2px solid #ddd;
|
114 |
+
border-radius: 10px;
|
115 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2);
|
116 |
+
}
|
117 |
+
.output-textbox {
|
118 |
+
font-size: 1.2em;
|
119 |
+
text-align: center;
|
120 |
+
color: #333;
|
121 |
+
}
|
122 |
+
""",
|
123 |
+
)
|
124 |
+
|
125 |
+
# Launch the Gradio interface
|
126 |
+
iface.launch()
|