Update app.py
Browse files
app.py
CHANGED
@@ -3,9 +3,7 @@ from fastapi import FastAPI
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
5 |
import torch
|
6 |
-
from threading import Thread
|
7 |
import uvicorn
|
8 |
-
import requests
|
9 |
|
10 |
# Configurar FastAPI
|
11 |
app = FastAPI()
|
@@ -40,6 +38,15 @@ async def predict(input: TextInput):
|
|
40 |
|
41 |
return {"entities": entities}
|
42 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
# Iniciar el servidor de FastAPI
|
44 |
if __name__ == "__main__":
|
45 |
-
uvicorn.run(app, host="0.0.0.0", port=8000)
|
|
|
3 |
from pydantic import BaseModel
|
4 |
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
5 |
import torch
|
|
|
6 |
import uvicorn
|
|
|
7 |
|
8 |
# Configurar FastAPI
|
9 |
app = FastAPI()
|
|
|
38 |
|
39 |
return {"entities": entities}
|
40 |
|
41 |
+
# Configurar Gradio
|
42 |
+
def predict_gradio(text):
|
43 |
+
response = requests.post("http://localhost:8000/predict", json={"text": text})
|
44 |
+
entities = response.json().get("entities", [])
|
45 |
+
return entities
|
46 |
+
|
47 |
+
demo = gr.Interface(fn=predict_gradio, inputs="text", outputs="json")
|
48 |
+
demo.launch(share=True)
|
49 |
+
|
50 |
# Iniciar el servidor de FastAPI
|
51 |
if __name__ == "__main__":
|
52 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|