juanpablosanchez commited on
Commit
63dfca7
·
verified ·
1 Parent(s): e5b8152

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -10
app.py CHANGED
@@ -3,9 +3,7 @@ from fastapi import FastAPI
3
  from pydantic import BaseModel
4
  from transformers import AutoTokenizer, AutoModelForTokenClassification
5
  import torch
6
- from threading import Thread
7
  import uvicorn
8
- import requests
9
 
10
  # Configurar FastAPI
11
  app = FastAPI()
@@ -40,18 +38,16 @@ async def predict(input: TextInput):
40
 
41
  return {"entities": entities}
42
 
43
- # Iniciar el servidor de FastAPI en un hilo separado
44
- def start_api():
45
- uvicorn.run(app, host="0.0.0.0", port=8000)
46
-
47
- api_thread = Thread(target=start_api, daemon=True)
48
- api_thread.start()
49
-
50
  # Configurar Gradio
51
  def predict_gradio(text):
52
- response = requests.post("https://asmalljob-docker01.hf.space/predict", json={"text": text}) # Asegúrate de que esta URL es correcta
53
  entities = response.json().get("entities", [])
54
  return entities
55
 
56
  demo = gr.Interface(fn=predict_gradio, inputs="text", outputs="json")
57
  demo.launch(share=True)
 
 
 
 
 
 
3
  from pydantic import BaseModel
4
  from transformers import AutoTokenizer, AutoModelForTokenClassification
5
  import torch
 
6
  import uvicorn
 
7
 
8
  # Configurar FastAPI
9
  app = FastAPI()
 
38
 
39
  return {"entities": entities}
40
 
 
 
 
 
 
 
 
41
  # Configurar Gradio
42
  def predict_gradio(text):
43
+ response = requests.post("http://localhost:8000/predict", json={"text": text})
44
  entities = response.json().get("entities", [])
45
  return entities
46
 
47
  demo = gr.Interface(fn=predict_gradio, inputs="text", outputs="json")
48
  demo.launch(share=True)
49
+
50
+ # Iniciar el servidor de FastAPI
51
+ if __name__ == "__main__":
52
+ uvicorn.run(app, host="0.0.0.0", port=8000)
53
+