sonyps1928
commited on
Commit
·
760431c
1
Parent(s):
6ad91fc
update app
Browse files- app.py +81 -155
- requirements.txt +4 -3
app.py
CHANGED
@@ -1,23 +1,16 @@
|
|
1 |
-
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import torch
|
4 |
-
import logging
|
5 |
-
import os
|
6 |
|
7 |
-
# Set up logging
|
8 |
-
logging.basicConfig(level=logging.INFO)
|
9 |
-
logger = logging.getLogger(__name__)
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
# Load model and tokenizer globally
|
15 |
-
logger.info("Loading GPT-2 model and tokenizer...")
|
16 |
-
model_name = "gpt2"
|
17 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
18 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
|
|
|
|
|
|
19 |
tokenizer.pad_token = tokenizer.eos_token
|
20 |
-
logger.info("Model loaded successfully!")
|
21 |
|
22 |
|
23 |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
|
@@ -30,7 +23,7 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
|
|
30 |
with torch.no_grad():
|
31 |
outputs = model.generate(
|
32 |
inputs,
|
33 |
-
max_length=min(max_length + len(inputs[0]), 512),
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
top_k=top_k,
|
@@ -46,150 +39,83 @@ def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
|
|
46 |
return generated_text[len(prompt):].strip()
|
47 |
|
48 |
except Exception as e:
|
49 |
-
|
50 |
-
return f"Error: {str(e)}"
|
51 |
-
|
52 |
-
|
53 |
-
@app.route('/')
|
54 |
-
def root():
|
55 |
-
"""API information endpoint"""
|
56 |
-
return jsonify({
|
57 |
-
"message": "GPT-2 Text Generation API",
|
58 |
-
"model": model_name,
|
59 |
-
"endpoints": {
|
60 |
-
"/": "API information",
|
61 |
-
"/health": "Health check",
|
62 |
-
"/generate": "POST - Generate text"
|
63 |
-
},
|
64 |
-
"example_request": {
|
65 |
-
"url": "/generate",
|
66 |
-
"method": "POST",
|
67 |
-
"headers": {"Content-Type": "application/json"},
|
68 |
-
"body": {
|
69 |
-
"prompt": "Once upon a time",
|
70 |
-
"max_length": 100,
|
71 |
-
"temperature": 0.7,
|
72 |
-
"top_p": 0.9,
|
73 |
-
"top_k": 50
|
74 |
-
}
|
75 |
-
}
|
76 |
-
})
|
77 |
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
"
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
result = {
|
126 |
-
'generated_text': generated_text,
|
127 |
-
'prompt': prompt,
|
128 |
-
'parameters': {
|
129 |
-
'max_length': max_length,
|
130 |
-
'temperature': temperature,
|
131 |
-
'top_p': top_p,
|
132 |
-
'top_k': top_k
|
133 |
-
}
|
134 |
-
}
|
135 |
-
|
136 |
-
logger.info("Text generation successful")
|
137 |
-
return jsonify(result)
|
138 |
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
return jsonify({
|
165 |
-
'error': 'Not found',
|
166 |
-
'available_endpoints': ['/', '/health', '/generate'],
|
167 |
-
'message': 'Check the available endpoints above'
|
168 |
-
}), 404
|
169 |
-
|
170 |
-
|
171 |
-
@app.errorhandler(405)
|
172 |
-
def method_not_allowed(error):
|
173 |
-
return jsonify({
|
174 |
-
'error': 'Method not allowed',
|
175 |
-
'message': 'Check the allowed methods for this endpoint'
|
176 |
-
}), 405
|
177 |
-
|
178 |
-
|
179 |
-
@app.errorhandler(500)
|
180 |
-
def internal_error(error):
|
181 |
-
return jsonify({'error': 'Internal server error'}), 500
|
182 |
|
183 |
|
|
|
184 |
if __name__ == "__main__":
|
185 |
-
|
186 |
-
port = int(os.environ.get("PORT", 7860))
|
187 |
-
host = "0.0.0.0"
|
188 |
-
|
189 |
-
logger.info(f"Starting GPT-2 API server on {host}:{port}")
|
190 |
-
logger.info("Available endpoints:")
|
191 |
-
logger.info(" GET / - API information")
|
192 |
-
logger.info(" GET /health - Health check")
|
193 |
-
logger.info(" POST /generate - Text generation")
|
194 |
-
|
195 |
-
app.run(host=host, port=port, debug=False)
|
|
|
1 |
+
import gradio as gr
|
2 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
3 |
import torch
|
|
|
|
|
4 |
|
|
|
|
|
|
|
5 |
|
6 |
+
# Load model and tokenizer (using smaller GPT-2 for free tier)
|
7 |
+
model_name = "gpt2" # You can also use "gpt2-medium" if it fits in memory
|
|
|
|
|
|
|
|
|
8 |
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
9 |
model = GPT2LMHeadModel.from_pretrained(model_name)
|
10 |
+
|
11 |
+
|
12 |
+
# Set pad token
|
13 |
tokenizer.pad_token = tokenizer.eos_token
|
|
|
14 |
|
15 |
|
16 |
def generate_text(prompt, max_length=100, temperature=0.7, top_p=0.9, top_k=50):
|
|
|
23 |
with torch.no_grad():
|
24 |
outputs = model.generate(
|
25 |
inputs,
|
26 |
+
max_length=min(max_length + len(inputs[0]), 512), # Limit total length
|
27 |
temperature=temperature,
|
28 |
top_p=top_p,
|
29 |
top_k=top_k,
|
|
|
39 |
return generated_text[len(prompt):].strip()
|
40 |
|
41 |
except Exception as e:
|
42 |
+
return f"Error generating text: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
|
45 |
+
# Create Gradio interface
|
46 |
+
with gr.Blocks(title="GPT-2 Text Generator") as demo:
|
47 |
+
gr.Markdown("# GPT-2 Text Generation Server")
|
48 |
+
gr.Markdown("Enter a prompt and generate text using GPT-2. Free tier optimized!")
|
49 |
+
|
50 |
+
with gr.Row():
|
51 |
+
with gr.Column():
|
52 |
+
prompt_input = gr.Textbox(
|
53 |
+
label="Prompt",
|
54 |
+
placeholder="Enter your text prompt here...",
|
55 |
+
lines=3
|
56 |
+
)
|
57 |
+
|
58 |
+
with gr.Row():
|
59 |
+
max_length = gr.Slider(
|
60 |
+
minimum=10,
|
61 |
+
maximum=200,
|
62 |
+
value=100,
|
63 |
+
step=10,
|
64 |
+
label="Max Length"
|
65 |
+
)
|
66 |
+
temperature = gr.Slider(
|
67 |
+
minimum=0.1,
|
68 |
+
maximum=2.0,
|
69 |
+
value=0.7,
|
70 |
+
step=0.1,
|
71 |
+
label="Temperature"
|
72 |
+
)
|
73 |
+
|
74 |
+
with gr.Row():
|
75 |
+
top_p = gr.Slider(
|
76 |
+
minimum=0.1,
|
77 |
+
maximum=1.0,
|
78 |
+
value=0.9,
|
79 |
+
step=0.1,
|
80 |
+
label="Top-p"
|
81 |
+
)
|
82 |
+
top_k = gr.Slider(
|
83 |
+
minimum=1,
|
84 |
+
maximum=100,
|
85 |
+
value=50,
|
86 |
+
step=1,
|
87 |
+
label="Top-k"
|
88 |
+
)
|
89 |
+
|
90 |
+
generate_btn = gr.Button("Generate Text", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
with gr.Column():
|
93 |
+
output_text = gr.Textbox(
|
94 |
+
label="Generated Text",
|
95 |
+
lines=10,
|
96 |
+
placeholder="Generated text will appear here..."
|
97 |
+
)
|
98 |
+
|
99 |
+
# Examples
|
100 |
+
gr.Examples(
|
101 |
+
examples=[
|
102 |
+
["Once upon a time in a distant galaxy,"],
|
103 |
+
["The future of artificial intelligence is"],
|
104 |
+
["In the heart of the ancient forest,"],
|
105 |
+
["The detective walked into the room and noticed"],
|
106 |
+
],
|
107 |
+
inputs=prompt_input
|
108 |
+
)
|
109 |
+
|
110 |
+
# Connect the function with explicit API endpoint name
|
111 |
+
generate_btn.click(
|
112 |
+
fn=generate_text,
|
113 |
+
inputs=[prompt_input, max_length, temperature, top_p, top_k],
|
114 |
+
outputs=output_text,
|
115 |
+
api_name="/predict" # Explicit API endpoint for external calls
|
116 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
|
119 |
+
# Launch the app
|
120 |
if __name__ == "__main__":
|
121 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,3 +1,4 @@
|
|
1 |
-
|
2 |
-
transformers
|
3 |
-
torch
|
|
|
|
1 |
+
gradio>=3.50.0
|
2 |
+
transformers>=4.30.0
|
3 |
+
torch>=2.0.0
|
4 |
+
tokenizers>=0.13.0
|