sonyps1928
commited on
Commit
Β·
b4a4c25
1
Parent(s):
8511f5e
update app
Browse files- app.py +81 -155
- requirements.txt +4 -4
app.py
CHANGED
@@ -1,205 +1,131 @@
|
|
1 |
import gradio as gr
|
2 |
import os
|
3 |
-
import time
|
4 |
-
from collections import defaultdict
|
5 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
6 |
import torch
|
7 |
|
8 |
-
|
|
|
|
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
-
API_KEY = os.getenv("API_KEY")
|
11 |
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
|
12 |
|
13 |
-
print("
|
14 |
-
print(f"
|
15 |
-
print(f"
|
16 |
-
print(f" ADMIN_PASSWORD: {'β
Set' if ADMIN_PASSWORD else 'β Not set'}")
|
17 |
-
|
18 |
-
# Simple rate limiting
|
19 |
-
request_counts = defaultdict(list)
|
20 |
-
|
21 |
-
# Load model
|
22 |
-
model_name = "gpt2"
|
23 |
-
print("π¦ Loading model...")
|
24 |
|
|
|
|
|
25 |
try:
|
26 |
-
|
27 |
-
|
28 |
-
model = GPT2LMHeadModel.from_pretrained(model_name, token=HF_TOKEN)
|
29 |
-
print("β
Model loaded with HF token")
|
30 |
-
else:
|
31 |
-
tokenizer = GPT2Tokenizer.from_pretrained(model_name)
|
32 |
-
model = GPT2LMHeadModel.from_pretrained(model_name)
|
33 |
-
print("β
Model loaded without token")
|
34 |
-
|
35 |
tokenizer.pad_token = tokenizer.eos_token
|
36 |
-
print("β
Model
|
37 |
-
|
38 |
except Exception as e:
|
39 |
-
print(f"β
|
40 |
-
raise
|
41 |
|
42 |
-
def
|
43 |
-
"""Simple
|
44 |
-
if not
|
45 |
-
return
|
46 |
-
|
47 |
-
if not provided_key or provided_key != API_KEY:
|
48 |
-
return False, "Invalid or missing API key"
|
49 |
-
|
50 |
-
# Simple rate limiting (100 requests per hour)
|
51 |
-
now = time.time()
|
52 |
-
hour_ago = now - 3600
|
53 |
-
|
54 |
-
# Clean old requests
|
55 |
-
request_counts[provided_key] = [
|
56 |
-
t for t in request_counts[provided_key] if t > hour_ago
|
57 |
-
]
|
58 |
-
|
59 |
-
if len(request_counts[provided_key]) >= 100:
|
60 |
-
return False, "Rate limit exceeded (100/hour)"
|
61 |
-
|
62 |
-
request_counts[provided_key].append(now)
|
63 |
-
return True, f"Authenticated ({len(request_counts[provided_key])}/100)"
|
64 |
-
|
65 |
-
def generate_text(prompt, max_length, temperature, top_p, top_k, api_key):
|
66 |
-
"""Generate text with GPT-2"""
|
67 |
-
|
68 |
-
# API key check
|
69 |
-
valid, msg = check_api_key(api_key)
|
70 |
-
if not valid:
|
71 |
-
return f"π Error: {msg}"
|
72 |
-
|
73 |
-
# Input validation
|
74 |
-
if not prompt.strip():
|
75 |
-
return "β Please enter a prompt"
|
76 |
|
77 |
-
if len(prompt) >
|
78 |
-
return "
|
79 |
|
80 |
try:
|
81 |
-
print(f"
|
82 |
-
print(f"π Generating: {prompt[:50]}...")
|
83 |
|
84 |
-
# Encode
|
85 |
-
inputs = tokenizer.encode(
|
86 |
-
prompt,
|
87 |
-
return_tensors="pt",
|
88 |
-
max_length=400,
|
89 |
-
truncation=True
|
90 |
-
)
|
91 |
|
92 |
-
# Generate
|
93 |
with torch.no_grad():
|
94 |
outputs = model.generate(
|
95 |
inputs,
|
96 |
-
max_length=
|
97 |
-
temperature=
|
98 |
-
top_p=max(0.1, min(1.0, top_p)),
|
99 |
-
top_k=max(1, min(100, top_k)),
|
100 |
do_sample=True,
|
101 |
pad_token_id=tokenizer.eos_token_id,
|
102 |
-
|
103 |
no_repeat_ngram_size=2
|
104 |
)
|
105 |
|
106 |
-
# Decode
|
107 |
-
|
108 |
-
result = generated[len(prompt):].strip()
|
109 |
|
110 |
-
|
111 |
-
|
|
|
|
|
|
|
112 |
|
113 |
except Exception as e:
|
114 |
-
|
115 |
-
print(
|
116 |
-
return
|
117 |
|
118 |
-
# Create
|
119 |
-
|
120 |
|
121 |
-
with demo:
|
122 |
-
#
|
123 |
-
gr.Markdown("
|
124 |
-
|
125 |
-
# Security info
|
126 |
-
if API_KEY:
|
127 |
-
gr.Markdown("π **API Authentication Required**")
|
128 |
-
else:
|
129 |
-
gr.Markdown("π **Public Access Mode**")
|
130 |
|
131 |
with gr.Row():
|
132 |
with gr.Column():
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
placeholder="Enter your text prompt...",
|
137 |
lines=3
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
)
|
147 |
-
else:
|
148 |
-
api_key = gr.Textbox(value="", visible=False)
|
149 |
-
|
150 |
-
# Parameters
|
151 |
-
max_length = gr.Slider(
|
152 |
-
10, 200, 100,
|
153 |
-
label="Max Length"
|
154 |
-
)
|
155 |
-
temperature = gr.Slider(
|
156 |
-
0.1, 2.0, 0.7,
|
157 |
-
label="Temperature"
|
158 |
)
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
1,
|
165 |
-
label="
|
166 |
)
|
167 |
|
168 |
-
|
169 |
-
generate_btn = gr.Button("Generate", variant="primary")
|
170 |
|
171 |
with gr.Column():
|
172 |
-
|
173 |
-
output = gr.Textbox(
|
174 |
label="Generated Text",
|
175 |
-
lines=
|
176 |
placeholder="Generated text will appear here..."
|
177 |
)
|
178 |
|
179 |
-
#
|
180 |
-
gr.Examples(
|
181 |
-
[
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
185 |
|
186 |
-
# Connect function
|
187 |
-
|
188 |
-
generate_text,
|
189 |
-
inputs=[
|
190 |
-
outputs=
|
191 |
)
|
192 |
|
193 |
-
#
|
|
|
|
|
194 |
if __name__ == "__main__":
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
print("π Admin auth enabled")
|
199 |
-
|
200 |
-
print("π Starting server...")
|
201 |
-
|
202 |
-
# MINIMAL launch config that works on HF Spaces
|
203 |
-
demo.launch(auth=auth)
|
204 |
-
|
205 |
-
print("β
Server running!")
|
|
|
1 |
import gradio as gr
|
2 |
import os
|
|
|
|
|
3 |
from transformers import GPT2LMHeadModel, GPT2Tokenizer
|
4 |
import torch
|
5 |
|
6 |
+
print("π Starting GPT-2 Text Generator...")
|
7 |
+
|
8 |
+
# Load environment variables
|
9 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
+
API_KEY = os.getenv("API_KEY")
|
11 |
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD")
|
12 |
|
13 |
+
print(f"HF_TOKEN: {'Set' if HF_TOKEN else 'Not set'}")
|
14 |
+
print(f"API_KEY: {'Set' if API_KEY else 'Not set'}")
|
15 |
+
print(f"ADMIN_PASSWORD: {'Set' if ADMIN_PASSWORD else 'Not set'}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
# Load model and tokenizer
|
18 |
+
print("Loading GPT-2 model...")
|
19 |
try:
|
20 |
+
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
21 |
+
model = GPT2LMHeadModel.from_pretrained("gpt2")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
tokenizer.pad_token = tokenizer.eos_token
|
23 |
+
print("β
Model loaded successfully!")
|
|
|
24 |
except Exception as e:
|
25 |
+
print(f"β Error loading model: {e}")
|
26 |
+
raise e
|
27 |
|
28 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
29 |
+
"""Simple text generation function"""
|
30 |
+
if not prompt:
|
31 |
+
return "Please enter a prompt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
if len(prompt) > 500:
|
34 |
+
return "Prompt too long (max 500 characters)"
|
35 |
|
36 |
try:
|
37 |
+
print(f"Generating text for: {prompt[:30]}...")
|
|
|
38 |
|
39 |
+
# Encode the prompt
|
40 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt", max_length=300, truncation=True)
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
# Generate text
|
43 |
with torch.no_grad():
|
44 |
outputs = model.generate(
|
45 |
inputs,
|
46 |
+
max_length=inputs.shape[1] + max_length,
|
47 |
+
temperature=temperature,
|
|
|
|
|
48 |
do_sample=True,
|
49 |
pad_token_id=tokenizer.eos_token_id,
|
50 |
+
eos_token_id=tokenizer.eos_token_id,
|
51 |
no_repeat_ngram_size=2
|
52 |
)
|
53 |
|
54 |
+
# Decode the output
|
55 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
56 |
|
57 |
+
# Extract only the new text (remove the original prompt)
|
58 |
+
new_text = generated_text[len(prompt):].strip()
|
59 |
+
|
60 |
+
print(f"β
Generated {len(new_text)} characters")
|
61 |
+
return new_text if new_text else "No text generated. Try a different prompt."
|
62 |
|
63 |
except Exception as e:
|
64 |
+
error_msg = f"Error generating text: {str(e)}"
|
65 |
+
print(f"β {error_msg}")
|
66 |
+
return error_msg
|
67 |
|
68 |
+
# Create the Gradio interface
|
69 |
+
print("Creating Gradio interface...")
|
70 |
|
71 |
+
with gr.Blocks() as demo:
|
72 |
+
gr.Markdown("# GPT-2 Text Generator")
|
73 |
+
gr.Markdown("Enter a prompt and click generate to create text using GPT-2")
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
|
75 |
with gr.Row():
|
76 |
with gr.Column():
|
77 |
+
prompt_input = gr.Textbox(
|
78 |
+
label="Enter your prompt",
|
79 |
+
placeholder="Type your text here...",
|
|
|
80 |
lines=3
|
81 |
)
|
82 |
|
83 |
+
max_length_slider = gr.Slider(
|
84 |
+
minimum=20,
|
85 |
+
maximum=200,
|
86 |
+
value=100,
|
87 |
+
step=10,
|
88 |
+
label="Max length of generated text"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
89 |
)
|
90 |
+
|
91 |
+
temperature_slider = gr.Slider(
|
92 |
+
minimum=0.1,
|
93 |
+
maximum=1.5,
|
94 |
+
value=0.7,
|
95 |
+
step=0.1,
|
96 |
+
label="Temperature (creativity)"
|
97 |
)
|
98 |
|
99 |
+
generate_button = gr.Button("Generate Text", variant="primary")
|
|
|
100 |
|
101 |
with gr.Column():
|
102 |
+
output_text = gr.Textbox(
|
|
|
103 |
label="Generated Text",
|
104 |
+
lines=8,
|
105 |
placeholder="Generated text will appear here..."
|
106 |
)
|
107 |
|
108 |
+
# Add some example prompts
|
109 |
+
gr.Examples(
|
110 |
+
examples=[
|
111 |
+
"Once upon a time",
|
112 |
+
"The future of technology is",
|
113 |
+
"In a world where",
|
114 |
+
],
|
115 |
+
inputs=prompt_input
|
116 |
+
)
|
117 |
|
118 |
+
# Connect the generate function
|
119 |
+
generate_button.click(
|
120 |
+
fn=generate_text,
|
121 |
+
inputs=[prompt_input, max_length_slider, temperature_slider],
|
122 |
+
outputs=output_text
|
123 |
)
|
124 |
|
125 |
+
# Launch the app
|
126 |
+
print("Launching Gradio app...")
|
127 |
+
|
128 |
if __name__ == "__main__":
|
129 |
+
demo.launch()
|
130 |
+
|
131 |
+
print("β
App is running!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
gradio
|
2 |
-
transformers
|
3 |
-
torch
|
4 |
-
tokenizers
|
|
|
1 |
+
gradio==4.44.0
|
2 |
+
transformers==4.44.2
|
3 |
+
torch==2.4.1
|
4 |
+
tokenizers==0.19.1
|