Spaces:
Sleeping
Sleeping
Add Rag basic prompt
Browse files- app.py +34 -5
- utils/prompts.py +75 -23
app.py
CHANGED
@@ -11,8 +11,10 @@ import pandas as pd
|
|
11 |
from gradio.data_classes import FileData
|
12 |
from utils.prompts import (
|
13 |
generate_mapping_prompt,
|
14 |
-
generate_eda_prompt,
|
15 |
generate_embedding_prompt,
|
|
|
|
|
|
|
16 |
)
|
17 |
|
18 |
"""
|
@@ -58,7 +60,11 @@ def get_compatible_libraries(dataset: str):
|
|
58 |
def create_notebook_file(cell_commands, notebook_name):
|
59 |
nb = nbf.v4.new_notebook()
|
60 |
nb["cells"] = [
|
61 |
-
nbf.v4.new_code_cell(
|
|
|
|
|
|
|
|
|
62 |
if cmd["cell_type"] == "code"
|
63 |
else nbf.v4.new_markdown_cell(cmd["source"])
|
64 |
for cmd in cell_commands
|
@@ -134,7 +140,7 @@ def content_from_output(output):
|
|
134 |
|
135 |
|
136 |
def generate_eda_cells(dataset_id, profile: gr.OAuthProfile | None):
|
137 |
-
for messages in generate_cells(dataset_id,
|
138 |
yield messages, gr.update(visible=False), None # Keep button hidden
|
139 |
|
140 |
yield (
|
@@ -144,6 +150,17 @@ def generate_eda_cells(dataset_id, profile: gr.OAuthProfile | None):
|
|
144 |
)
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def generate_embedding_cells(dataset_id, profile: gr.OAuthProfile | None):
|
148 |
for messages in generate_cells(dataset_id, generate_embedding_prompt, "embedding"):
|
149 |
yield messages, gr.update(visible=False), None # Keep button hidden
|
@@ -219,11 +236,16 @@ def generate_cells(dataset_id, prompt_fn, notebook_type="eda"):
|
|
219 |
first_config = first_config_loading_code["config_name"]
|
220 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
221 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
222 |
-
prompt =
|
|
|
|
|
223 |
messages = [gr.ChatMessage(role="user", content=prompt)]
|
224 |
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")]
|
225 |
|
226 |
-
prompt_messages = [
|
|
|
|
|
|
|
227 |
output = inference_client.chat_completion(
|
228 |
messages=prompt_messages, stream=True, max_tokens=2500
|
229 |
)
|
@@ -312,6 +334,7 @@ with gr.Blocks(fill_height=True) as demo:
|
|
312 |
with gr.Row():
|
313 |
generate_eda_btn = gr.Button("Generate EDA notebook")
|
314 |
generate_embedding_btn = gr.Button("Generate Embeddings notebook")
|
|
|
315 |
generate_training_btn = gr.Button("Generate Training notebook")
|
316 |
with gr.Column():
|
317 |
chatbot = gr.Chatbot(
|
@@ -332,6 +355,12 @@ with gr.Blocks(fill_height=True) as demo:
|
|
332 |
outputs=[chatbot, push_btn, notebook_file],
|
333 |
)
|
334 |
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
generate_embedding_btn.click(
|
336 |
generate_embedding_cells,
|
337 |
inputs=[dataset_name],
|
|
|
11 |
from gradio.data_classes import FileData
|
12 |
from utils.prompts import (
|
13 |
generate_mapping_prompt,
|
|
|
14 |
generate_embedding_prompt,
|
15 |
+
generate_user_prompt,
|
16 |
+
generate_rag_system_prompt,
|
17 |
+
generate_eda_system_prompt,
|
18 |
)
|
19 |
|
20 |
"""
|
|
|
60 |
def create_notebook_file(cell_commands, notebook_name):
|
61 |
nb = nbf.v4.new_notebook()
|
62 |
nb["cells"] = [
|
63 |
+
nbf.v4.new_code_cell(
|
64 |
+
cmd["source"]
|
65 |
+
if isinstance(cmd["source"], str)
|
66 |
+
else "\n".join(cmd["source"])
|
67 |
+
)
|
68 |
if cmd["cell_type"] == "code"
|
69 |
else nbf.v4.new_markdown_cell(cmd["source"])
|
70 |
for cmd in cell_commands
|
|
|
140 |
|
141 |
|
142 |
def generate_eda_cells(dataset_id, profile: gr.OAuthProfile | None):
|
143 |
+
for messages in generate_cells(dataset_id, generate_eda_system_prompt, "eda"):
|
144 |
yield messages, gr.update(visible=False), None # Keep button hidden
|
145 |
|
146 |
yield (
|
|
|
150 |
)
|
151 |
|
152 |
|
153 |
+
def generate_rag_cells(dataset_id, profile: gr.OAuthProfile | None):
|
154 |
+
for messages in generate_cells(dataset_id, generate_rag_system_prompt, "rag"):
|
155 |
+
yield messages, gr.update(visible=False), None # Keep button hidden
|
156 |
+
|
157 |
+
yield (
|
158 |
+
messages,
|
159 |
+
gr.update(visible=profile and dataset_id.split("/")[0] == profile.username),
|
160 |
+
f"{dataset_id.replace('/', '-')}-rag.ipynb",
|
161 |
+
)
|
162 |
+
|
163 |
+
|
164 |
def generate_embedding_cells(dataset_id, profile: gr.OAuthProfile | None):
|
165 |
for messages in generate_cells(dataset_id, generate_embedding_prompt, "embedding"):
|
166 |
yield messages, gr.update(visible=False), None # Keep button hidden
|
|
|
236 |
first_config = first_config_loading_code["config_name"]
|
237 |
first_split = list(first_config_loading_code["arguments"]["splits"].keys())[0]
|
238 |
features, df = get_first_rows_as_df(dataset_id, first_config, first_split, 3)
|
239 |
+
prompt = generate_user_prompt(
|
240 |
+
features, df.head(5).to_dict(orient="records"), first_code
|
241 |
+
)
|
242 |
messages = [gr.ChatMessage(role="user", content=prompt)]
|
243 |
yield messages + [gr.ChatMessage(role="assistant", content="⏳ _Starting task..._")]
|
244 |
|
245 |
+
prompt_messages = [
|
246 |
+
{"role": "system", "content": prompt_fn()},
|
247 |
+
{"role": "user", "content": prompt},
|
248 |
+
]
|
249 |
output = inference_client.chat_completion(
|
250 |
messages=prompt_messages, stream=True, max_tokens=2500
|
251 |
)
|
|
|
334 |
with gr.Row():
|
335 |
generate_eda_btn = gr.Button("Generate EDA notebook")
|
336 |
generate_embedding_btn = gr.Button("Generate Embeddings notebook")
|
337 |
+
generate_rag_btn = gr.Button("Generate RAG notebook")
|
338 |
generate_training_btn = gr.Button("Generate Training notebook")
|
339 |
with gr.Column():
|
340 |
chatbot = gr.Chatbot(
|
|
|
355 |
outputs=[chatbot, push_btn, notebook_file],
|
356 |
)
|
357 |
|
358 |
+
generate_rag_btn.click(
|
359 |
+
generate_rag_cells,
|
360 |
+
inputs=[dataset_name],
|
361 |
+
outputs=[chatbot, push_btn, notebook_file],
|
362 |
+
)
|
363 |
+
|
364 |
generate_embedding_btn.click(
|
365 |
generate_embedding_cells,
|
366 |
inputs=[dataset_name],
|
utils/prompts.py
CHANGED
@@ -21,37 +21,55 @@ def generate_mapping_prompt(code):
|
|
21 |
|
22 |
|
23 |
@outlines.prompt
|
24 |
-
def
|
25 |
-
"""
|
26 |
-
|
27 |
-
Columns and Data Types:
|
28 |
{{ columns_info }}
|
29 |
|
30 |
-
Sample Data
|
31 |
{{ sample_data }}
|
32 |
|
33 |
-
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
Ensure the notebook is well-organized, with explanations for each step.
|
|
|
|
|
42 |
|
43 |
-
|
44 |
|
45 |
-
|
46 |
|
47 |
-
|
48 |
|
|
|
49 |
"""
|
50 |
|
51 |
|
52 |
@outlines.prompt
|
53 |
-
def
|
54 |
-
"""You are an expert data scientist tasked with generating a Jupyter notebook to generate embeddings
|
55 |
The data is provided as a pandas DataFrame with the following structure:
|
56 |
|
57 |
Columns and Data Types:
|
@@ -60,24 +78,58 @@ def generate_embedding_prompt(columns_info, sample_data, first_code):
|
|
60 |
Sample Data:
|
61 |
{{ sample_data }}
|
62 |
|
63 |
-
Please create a notebook that includes the following:
|
64 |
|
65 |
1. Load the dataset
|
66 |
2. Load embedding model using sentence-transformers library
|
67 |
3. Convert data into embeddings
|
68 |
4. Store embeddings
|
69 |
-
|
70 |
Ensure the notebook is well-organized, with explanations for each step.
|
|
|
|
|
71 |
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
{{ first_code }}
|
75 |
|
76 |
"""
|
77 |
|
78 |
|
79 |
@outlines.prompt
|
80 |
-
def
|
81 |
-
"""
|
82 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
"""
|
|
|
21 |
|
22 |
|
23 |
@outlines.prompt
|
24 |
+
def generate_user_prompt(columns_info, sample_data, first_code):
|
25 |
+
"""
|
26 |
+
## Columns and Data Types
|
|
|
27 |
{{ columns_info }}
|
28 |
|
29 |
+
## Sample Data
|
30 |
{{ sample_data }}
|
31 |
|
32 |
+
## Loading Data code
|
33 |
+
{{ first_code }}
|
34 |
+
"""
|
35 |
+
|
36 |
|
37 |
+
@outlines.prompt
|
38 |
+
def generate_eda_system_prompt():
|
39 |
+
"""You are an expert data analyst tasked with generating an exploratory data analysis (EDA) Jupyter notebook.
|
40 |
+
You can use only the following libraries: Pandas for data manipulation, Matplotlib and Seaborn for visualisations, make sure to add them as part of the notebook for installation.
|
41 |
+
|
42 |
+
You create Exploratory Data Analysis jupyter notebooks with the following content:
|
43 |
+
|
44 |
+
1. Install an import libraries
|
45 |
+
2. Load the dataset
|
46 |
+
3. Understand the dataset
|
47 |
+
4. Check for missing values
|
48 |
+
5. Identify the data types of each column
|
49 |
+
6. Identify duplicated rows
|
50 |
+
7. Generate descriptive statistics
|
51 |
+
8. Visualize the distribution of each column
|
52 |
+
9. Visualize the relationship between columns
|
53 |
+
10. Correlation analysis
|
54 |
+
11. Any additional relevant visualizations or analyses you deem appropriate.
|
55 |
|
56 |
Ensure the notebook is well-organized, with explanations for each step.
|
57 |
+
The output should be a markdown content enclosing with "```python" and "```" the python code snippets.
|
58 |
+
The user will provide you information about the dataset in the following format:
|
59 |
|
60 |
+
## Columns and Data Types
|
61 |
|
62 |
+
## Sample Data
|
63 |
|
64 |
+
## Loading Data code
|
65 |
|
66 |
+
It is mandatory that you use the provided code to load the dataset, DO NOT try to load the dataset in any other way.
|
67 |
"""
|
68 |
|
69 |
|
70 |
@outlines.prompt
|
71 |
+
def generate_embedding_system_prompt():
|
72 |
+
"""You are an expert data scientist tasked with generating a Jupyter notebook to generate embeddings on a specific dataset.
|
73 |
The data is provided as a pandas DataFrame with the following structure:
|
74 |
|
75 |
Columns and Data Types:
|
|
|
78 |
Sample Data:
|
79 |
{{ sample_data }}
|
80 |
|
81 |
+
Please create a notebook that includes the following steps:
|
82 |
|
83 |
1. Load the dataset
|
84 |
2. Load embedding model using sentence-transformers library
|
85 |
3. Convert data into embeddings
|
86 |
4. Store embeddings
|
|
|
87 |
Ensure the notebook is well-organized, with explanations for each step.
|
88 |
+
The output should be a markdown content enclosing with "```python" and "```" the python code snippets.
|
89 |
+
The user will provide you information about the dataset in the following format:
|
90 |
|
91 |
+
## Columns and Data Types
|
92 |
+
|
93 |
+
## Sample Data
|
94 |
+
|
95 |
+
## Loading Data code
|
96 |
+
|
97 |
+
It is mandatory that you use the provided code to load the dataset, DO NOT try to load the dataset in any other way.
|
98 |
|
|
|
99 |
|
100 |
"""
|
101 |
|
102 |
|
103 |
@outlines.prompt
|
104 |
+
def generate_rag_system_prompt():
|
105 |
+
"""You are an expert machine learning engineer tasked with generating a Jupyter notebook to showcase a Retrieval-Augmented Generation (RAG) system based on a specific dataset.
|
106 |
+
The data is provided as a pandas DataFrame with the following structure:
|
107 |
+
|
108 |
+
You create Exploratory RAG jupyter notebooks with the following content:
|
109 |
+
|
110 |
+
1. Install libraries
|
111 |
+
2. Import libraries
|
112 |
+
3. Load dataset as dataframe
|
113 |
+
4. Choose column to be used for the embeddings
|
114 |
+
5. Remove duplicate data
|
115 |
+
6. Load column as a list
|
116 |
+
7. Load sentence-transformers model
|
117 |
+
8. Create FAISS index
|
118 |
+
9. Ask a query sample and encode it
|
119 |
+
10. Search similar documents based on the query sample and the FAISS index
|
120 |
+
11. Load HuggingFaceH4/zephyr-7b-beta model from transformers library and create a pipeline
|
121 |
+
12. Create a prompt with two parts: 'system' to give instructions to answer a question based on a 'context' that is the retrieved similar docuemnts and a 'user' part with the query
|
122 |
+
13. Send the prompt to the pipeline and show answer
|
123 |
+
|
124 |
+
Ensure the notebook is well-organized, with explanations for each step.
|
125 |
+
The output should be a markdown content enclosing with "```python" and "```" the python code snippets.
|
126 |
+
The user will provide you information about the dataset in the following format:
|
127 |
+
|
128 |
+
## Columns and Data Types
|
129 |
+
|
130 |
+
## Sample Data
|
131 |
+
|
132 |
+
## Loading Data code
|
133 |
+
|
134 |
+
It is mandatory that you use the provided code to load the dataset, DO NOT try to load the dataset in any other way.
|
135 |
"""
|