|
from flask import Flask, request, jsonify, send_from_directory, render_template
|
|
from flask_cors import CORS
|
|
from ultralytics import YOLO
|
|
import gradio as gr
|
|
from threading import Thread
|
|
import os
|
|
import uuid
|
|
import logging
|
|
from PIL import Image
|
|
|
|
|
|
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s %(levelname)s:%(message)s', datefmt='%Y-%m-%d %H:%M:%S')
|
|
|
|
|
|
app = Flask(__name__, static_folder='static')
|
|
CORS(app)
|
|
|
|
|
|
models = {
|
|
'追踪': 'models/yolov8n.pt',
|
|
'检测': 'models/danzhu.pt',
|
|
'分类': 'models/yolov8n-cls.pt',
|
|
'姿势': 'models/yolov8n-pose.pt',
|
|
'分割': 'models/yolov8n-seg.pt'
|
|
}
|
|
|
|
model_instances = {}
|
|
|
|
def load_model(model_path):
|
|
"""加载模型"""
|
|
try:
|
|
logging.info(f"正在从 {model_path} 加载模型...")
|
|
model = YOLO(model_path)
|
|
logging.info(f"模型从 {model_path} 成功加载")
|
|
return model
|
|
except Exception as e:
|
|
logging.error(f"从 {model_path} 加载模型失败: {e}")
|
|
return None
|
|
|
|
def convert_image_format(img_path, target_format='JPEG'):
|
|
"""转换图像格式"""
|
|
try:
|
|
with Image.open(img_path) as img:
|
|
if img.mode != 'RGB':
|
|
img = img.convert('RGB')
|
|
base_name, _ = os.path.splitext(img_path)
|
|
target_path = f"{base_name}.{target_format.lower()}"
|
|
img.save(target_path, format=target_format)
|
|
logging.info(f"图像格式成功转换为 {target_format},保存到 {target_path}")
|
|
return target_path
|
|
except Exception as e:
|
|
logging.error(f"图像格式转换失败: {e}")
|
|
raise
|
|
|
|
def predict(model_name, img_path):
|
|
"""进行预测"""
|
|
try:
|
|
if model_name not in models:
|
|
logging.error("选择的模型无效。")
|
|
return "选择的模型无效。"
|
|
|
|
model_path = models[model_name]
|
|
if model_name not in model_instances:
|
|
model_instances[model_name] = load_model(model_path)
|
|
model = model_instances[model_name]
|
|
|
|
if model is None:
|
|
logging.error("由于连接错误,模型未加载。")
|
|
return "由于连接错误,模型未加载。"
|
|
|
|
unique_name = str(uuid.uuid4())
|
|
save_dir = './runs/detect'
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
logging.info(f"保存目录: {save_dir}")
|
|
|
|
|
|
img_path_converted = convert_image_format(img_path, 'JPEG')
|
|
img_path_converted = os.path.normpath(img_path_converted)
|
|
logging.info(f"对 {img_path_converted} 进行预测...")
|
|
|
|
results = model.predict(img_path_converted, save=True, project=save_dir, name=unique_name, device='cpu')
|
|
logging.info(f"预测结果: {results}")
|
|
|
|
result_dir = os.path.join(save_dir, unique_name)
|
|
result_dir = os.path.normpath(result_dir)
|
|
logging.info(f"结果目录: {result_dir}")
|
|
|
|
if not os.path.exists(result_dir):
|
|
logging.error(f"结果目录 {result_dir} 不存在")
|
|
return "未找到预测结果。"
|
|
|
|
|
|
predicted_img_path = None
|
|
for file in os.listdir(result_dir):
|
|
if file.lower().endswith(('.jpeg', '.jpg')):
|
|
predicted_img_path = os.path.join(result_dir, file)
|
|
break
|
|
|
|
if predicted_img_path:
|
|
logging.info(f"找到预测图像: {predicted_img_path}")
|
|
return predicted_img_path
|
|
else:
|
|
logging.error(f"在 {result_dir} 中未找到预测图像")
|
|
return "未找到预测结果。"
|
|
except Exception as e:
|
|
logging.error(f"预测过程中出错: {e}")
|
|
return f"预测过程中出错: {e}"
|
|
|
|
|
|
iface = gr.Interface(
|
|
fn=predict,
|
|
inputs=[
|
|
gr.Dropdown(choices=list(models.keys()), label="选择模型"),
|
|
gr.Image(type="filepath", label="输入图像")
|
|
],
|
|
outputs=gr.Image(type="filepath", label="输出图像")
|
|
)
|
|
|
|
@app.route('/')
|
|
def home():
|
|
"""主页"""
|
|
return render_template('index.html')
|
|
|
|
@app.route('/request', methods=['POST'])
|
|
def handle_request():
|
|
"""处理请求"""
|
|
try:
|
|
selected_model = request.form.get('model')
|
|
if selected_model not in models:
|
|
logging.error("选择的模型无效。")
|
|
return jsonify({'error': '选择的模型无效。'}), 400
|
|
|
|
model_path = models[selected_model]
|
|
if selected_model not in model_instances:
|
|
model_instances[selected_model] = load_model(model_path)
|
|
model = model_instances[selected_model]
|
|
|
|
if model is None:
|
|
logging.error("由于连接错误,模型未加载。")
|
|
return jsonify({'error': '由于连接错误,模型未加载。'}), 500
|
|
|
|
img = request.files.get('img')
|
|
if img is None:
|
|
logging.error("未提供图像。")
|
|
return jsonify({'error': '未提供图像。'}), 400
|
|
|
|
img_name = str(uuid.uuid4()) + '.jpg'
|
|
img_path = os.path.join('./img', img_name)
|
|
os.makedirs(os.path.dirname(img_path), exist_ok=True)
|
|
img.save(img_path)
|
|
logging.info(f"图像已保存到: {img_path}")
|
|
|
|
save_dir = './runs/detect'
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
unique_name = str(uuid.uuid4())
|
|
logging.info(f"对 {img_path} 进行预测...")
|
|
results = model.predict(img_path, save=True, project=save_dir, name=unique_name, device='cpu')
|
|
logging.info(f"预测结果: {results}")
|
|
|
|
result_dir = os.path.join(save_dir, unique_name)
|
|
|
|
|
|
predicted_img_path = None
|
|
for file in os.listdir(result_dir):
|
|
if file.endswith('.jpeg') or file.endswith('.jpg'):
|
|
predicted_img_path = os.path.join(result_dir, file)
|
|
break
|
|
|
|
if predicted_img_path:
|
|
img_url = f'/get/{unique_name}/{os.path.basename(predicted_img_path)}'
|
|
return jsonify({'message': '预测成功!', 'img_path': img_url})
|
|
else:
|
|
saved_files = os.listdir(result_dir)
|
|
logging.error(f"保存目录中包含文件: {saved_files}")
|
|
return jsonify({'error': '未找到预测结果。'}), 500
|
|
except Exception as e:
|
|
logging.error(f"处理请求时出错: {e}")
|
|
return jsonify({'error': f'处理过程中发生错误: {e}'}), 500
|
|
|
|
@app.route('/get/<unique_name>/<filename>')
|
|
def get_image(unique_name, filename):
|
|
"""获取图像"""
|
|
try:
|
|
return send_from_directory(os.path.join('runs/detect', unique_name), filename)
|
|
except Exception as e:
|
|
logging.error(f"提供文件时出错: {e}")
|
|
return jsonify({'error': '文件未找到。'}), 404
|
|
|
|
def run_gradio():
|
|
"""运行 Gradio 界面"""
|
|
logging.info("启动 Gradio 界面...")
|
|
iface.launch(share=True)
|
|
|
|
def run_flask():
|
|
"""运行 Flask 应用"""
|
|
logging.info("启动 Flask 应用...")
|
|
app.run(host="0.0.0.0", port=5000)
|
|
|
|
if __name__ == '__main__':
|
|
|
|
gradio_thread = Thread(target=run_gradio)
|
|
flask_thread = Thread(target=run_flask)
|
|
|
|
gradio_thread.start()
|
|
flask_thread.start()
|
|
|
|
gradio_thread.join()
|
|
flask_thread.join()
|
|
|