Spaces:
Sleeping
Sleeping
Updated app.py: Added all models
Browse files
app.py
CHANGED
@@ -2,26 +2,37 @@ import gradio as gr
|
|
2 |
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
3 |
import os
|
4 |
|
5 |
-
def transcribe(audio, language
|
6 |
model_map = {
|
7 |
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0",
|
8 |
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0",
|
9 |
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
}
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
"w/o LM": "main",
|
15 |
-
}
|
16 |
-
|
17 |
-
if revison_map[model] != "main":
|
18 |
-
# load processor
|
19 |
-
p = Wav2Vec2ProcessorWithLM.from_pretrained(model_map[language], revision=revison_map[model])
|
20 |
-
# load eval pipeline
|
21 |
-
asr = pipeline("automatic-speech-recognition", model=model_map[language], tokenizer=p.tokenizer, feature_extractor=p.feature_extractor, decoder=p.decoder, token=os.getenv('HF_TOKEN'))
|
22 |
else:
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
25 |
|
26 |
text = asr(audio)["text"]
|
27 |
return text
|
@@ -34,28 +45,28 @@ asr_app = gr.Interface(
|
|
34 |
[
|
35 |
"hausa",
|
36 |
"igbo",
|
37 |
-
"yoruba"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
]
|
39 |
),
|
40 |
-
gr.Radio(["w/o LM","w/ LM"])
|
41 |
-
],
|
42 |
-
examples=[
|
43 |
-
["./examples/CV/hausa/common_voice_ha_32885169.wav", "hausa", "w/o LM"],
|
44 |
-
["./examples/CV/hausa/common_voice_ha_32885169.wav", "hausa", "w/ LM"],
|
45 |
-
["./examples/CV/hausa/common_voice_ha_29417456.wav", "hausa", "w/o LM"],
|
46 |
-
["./examples/CV/hausa/common_voice_ha_29417456.wav", "hausa", "w/ LM"],
|
47 |
-
["./examples/CV/igbo/common_voice_ig_31594237.wav", "igbo", "w/o LM"],
|
48 |
-
["./examples/CV/igbo/common_voice_ig_31594237.wav", "igbo", "w/ LM"],
|
49 |
-
["./examples/CV/igbo/common_voice_ig_30710992.wav", "igbo", "w/o LM"],
|
50 |
-
["./examples/CV/igbo/common_voice_ig_30710992.wav", "igbo", "w/ LM"],
|
51 |
-
["./examples/CV/yoruba/common_voice_yo_36914062.wav", "yoruba", "w/o LM"],
|
52 |
-
["./examples/CV/yoruba/common_voice_yo_36914062.wav", "yoruba", "w/ LM"],
|
53 |
-
["./examples/CV/yoruba/common_voice_yo_36841367.wav", "yoruba", "w/o LM"],
|
54 |
-
["./examples/CV/yoruba/common_voice_yo_36841367.wav", "yoruba", "w/ LM"]
|
55 |
],
|
56 |
outputs="text",
|
57 |
-
title="
|
58 |
-
description="
|
59 |
)
|
60 |
|
61 |
asr_app.launch()
|
|
|
2 |
from transformers import pipeline, Wav2Vec2ProcessorWithLM
|
3 |
import os
|
4 |
|
5 |
+
def transcribe(audio, language):
|
6 |
model_map = {
|
7 |
"hausa": "asr-africa/wav2vec2-xls-r-1b-naijavoices-hausa-500hr-v0",
|
8 |
"igbo": "asr-africa/wav2vec2-xls-r-1b-naijavoices-igbo-500hr-v0",
|
9 |
"yoruba": "asr-africa/wav2vec2-xls-r-1b-naijavoices-yoruba-500hr-v0",
|
10 |
+
"zulu": "asr-africa/W2V2-Bert_nchlt_speech_corpus_Fleurs_ZULU_63hr_v1",
|
11 |
+
"xhosa": "asr-africa/wav2vec2_xls_r_300m_nchlt_speech_corpus_Fleurs_XHOSA_63hr_v1",
|
12 |
+
"afrikaans": "asr-africa/mms-1B_all_nchlt_speech_corpus_Fleurs_CV_AFRIKAANS_57hr_v1",
|
13 |
+
"bemba": "asr-africa/w2v-bert-2.0-BIG_C-AMMI-BEMBA_SPEECH_CORPUS-BEMBA-189hrs-V1",
|
14 |
+
"shona": "asr-africa/W2V2_Bert_Afrivoice_FLEURS_Shona_100hr_v1",
|
15 |
+
"luganda": "asr-africa/whisper-small-CV-Fleurs-lg-313hrs-v1",
|
16 |
+
"swahili": "asr-africa/wav2vec2-xls-r-300m-CV_Fleurs_AMMI_ALFFA-sw-400hrs-v1",
|
17 |
+
"lingala": "asr-africa/wav2vec2-xls-r-300m-Fleurs_AMMI_AFRIVOICE_LRSC-ln-109hrs-v2",
|
18 |
+
"amharic": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-amh-200hrs-v1",
|
19 |
+
"kinyarwanda": "asr-africa/facebook-mms-1b-all-common_voice_fleurs-rw-100hrs-v1",
|
20 |
+
"oromo": "asr-africa/mms-1b-all-Sagalee-orm-85hrs-4",
|
21 |
+
"akan": "asr-africa/wav2vec2-xls-r-ewe-100-hours",
|
22 |
+
"ewe": "asr-africa/wav2vec2-xls-r-akan-100-hours",
|
23 |
+
"wolof": "asr-africa/w2v2-bert-Wolof-20-hours-Google-Fleurs-ALF-dataset",
|
24 |
+
"bambara": "asr-africa/mms-bambara-50-hours-mixed-bambara-dataset",
|
25 |
}
|
26 |
|
27 |
+
if language in ["hausa", "igbo", "yoruba"]:
|
28 |
+
revision = "lm"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
else:
|
30 |
+
revision = "main"
|
31 |
+
|
32 |
+
# load processor
|
33 |
+
p = Wav2Vec2ProcessorWithLM.from_pretrained(model_map[language], revision=revision)
|
34 |
+
# load eval pipeline
|
35 |
+
asr = pipeline("automatic-speech-recognition", model=model_map[language], tokenizer=p.tokenizer, feature_extractor=p.feature_extractor, decoder=p.decoder, token=os.getenv('HF_TOKEN'))
|
36 |
|
37 |
text = asr(audio)["text"]
|
38 |
return text
|
|
|
45 |
[
|
46 |
"hausa",
|
47 |
"igbo",
|
48 |
+
"yoruba",
|
49 |
+
"zulu",
|
50 |
+
"xhosa",
|
51 |
+
"afrikaans",
|
52 |
+
"bemba",
|
53 |
+
"shona",
|
54 |
+
"luganda",
|
55 |
+
"swahili",
|
56 |
+
"lingala",
|
57 |
+
"amharic",
|
58 |
+
"kinyarwanda",
|
59 |
+
"oromo",
|
60 |
+
"akan",
|
61 |
+
"ewe",
|
62 |
+
"wolof",
|
63 |
+
"bambara",
|
64 |
]
|
65 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
],
|
67 |
outputs="text",
|
68 |
+
title="ASR Africa",
|
69 |
+
description="This space serves as a realtime demo for automatic speech recognition models developed by Mak-CAD under the auspicies of Gates Foundation for 19 African languages using open source data.",
|
70 |
)
|
71 |
|
72 |
asr_app.launch()
|