asthaa30's picture
Update app.py
b083e9c verified
raw
history blame
4.81 kB
import gradio as gr
import os
from huggingface_hub import InferenceClient
from huggingface_hub.inference._generated.types.chat_completion import ChatCompletionStreamOutput
# Use the fine-tuned maritime legal model
MODEL = "nomiChroma3.1"
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
try:
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
try:
if isinstance(message, ChatCompletionStreamOutput):
content = message.choices[0].delta.content
if content is not None:
response += content
yield response
if message.choices[0].finish_reason == 'stop':
break
elif isinstance(message, dict):
content = message.get('choices', [{}])[0].get('delta', {}).get('content')
if content:
response += content
yield response
if message.get('choices', [{}])[0].get('finish_reason') == 'stop':
break
elif isinstance(message, str):
if message.strip(): # Only process non-empty strings
response += message
yield response
else:
print(f"Unexpected message type: {type(message)}")
print(f"Message content: {message}")
except Exception as e:
print(f"Error processing message: {e}")
print(f"Problematic message: {message}")
continue # Continue to the next message even if there's an error
# Final yield to ensure all content is returned
if response:
yield response
except Exception as e:
print(f"An error occurred in the main loop: {e}")
if response:
yield response
else:
yield f"An error occurred: {e}"
# Custom CSS for light blue background and message tiles
custom_css = """
.gradio-container {
background-color: #e6f3ff !important;
}
.chat-window {
background-color: #f0f8ff !important;
}
.message.user, .message.bot {
background-color: #e6f3ff !important;
border: 1px solid #cce4ff !important;
padding: 15px !important;
border-radius: 8px !important;
}
.message.user {
background-color: #e1f0ff !important;
}
.message.bot {
background-color: #e6f3ff !important;
}
.input-box, .output-box {
background-color: #e6f3ff !important;
border: 1px solid #cce4ff !important;
}
textarea {
background-color: #e6f3ff !important;
}
"""
# Gradio interface setup with custom theme
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(
value="You are a maritime legal assistant with expertise strictly in Indian maritime law. Provide detailed legal advice and information based on Indian maritime legal principles and regulations.",
label="System message"
),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
title="Maritime Legal Compliance",
description="This chatbot uses Fine-tuned LLAMA-3.1 model personalised specifically to provide assistance with Indian maritime legal queries.",
theme=gr.themes.Soft(
primary_hue="blue",
secondary_hue="blue",
neutral_hue="blue",
).set_background(color="#e6f3ff"),
examples=[
["What are the key regulations governing ports in India?"],
["Explain the concept of cabotage in Indian maritime law."],
["What are the legal requirements for registering a vessel in India?"],
],
css=custom_css,
cache_examples=False,
)
# Launch the Gradio app
if __name__ == "__main__":
demo.launch()